skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photocatalytic C–F alkylation; facile access to multifluorinated arenes
C–F functionalizations that provide C–C bonds are challenging synthetic transformations, due in part to the large C–F bond strength, short bond length, nonpolarizable nature, the production of fluoride, and the regioselectivity-in the case of multifluorinated substrates. However, commercially available highly fluorinated arenes possess great synthetic potential because they already possess the C–F bonds in the desired locations that would be difficult to selectively fluorinate. In order to take advantage of this potential, selective C–F functionalizations must be developed. Herein, we disclose conditions for the photocatalytic reductive alkylation of highly fluorinated arenes with ubiquitous and unactivated alkenes. The mild reaction conditions provide for a broad functional group scope, and the reaction is remarkably efficient using just 0.25 mol% catalyst. Finally, we demonstrate the utility of the strategy by converting highly fluorinated arenes to elaborate (hetero)arenes that contain 2–5 C aryl –F bonds via synergistic use of photocatalysis and S N Ar chemistry.  more » « less
Award ID(s):
1453891
PAR ID:
10247705
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Science
Volume:
6
Issue:
12
ISSN:
2041-6520
Page Range / eLocation ID:
7206 to 7212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon–fluorine (C–F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C–H bond activation and functionalization, in many cases, the C–F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure–function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants. 
    more » « less
  2. Carbon–hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants. These are the most commonly employed hydride-abstracting agents, but recent efforts illustrate the potential for weaker ketone and triaryl borane oxidants, which will be covered at the end of the review. 
    more » « less
  3. Abstract Herein, a general approach to intermolecular benzylic C(sp3)−H alkylation of methyl‐substituted arenes is reported using metal carbenes derived fromN‐aryl‐α‐diazo‐β‐amidoesters and dirhodium catalysts. Alkylated products were formed in up to 81 % yield with demonstrated functional group tolerance, outpacing previous literature. The unique amide‐ester scaffolding can be exploited through various derivatizations for broad synthetic utility and provides a starting point for the development of selectivity rules and reactivity profiles for these intermolecular C(sp3)−H functionalizations. 
    more » « less
  4. null (Ed.)
    The exceptionally π-basic metal fragments {MoTp(NO)(DMAP)} and {WTp(NO)(PMe3)} (Tp = tris(pyrazolyl)borate; DMAP = 4-(N,N-dimethylamino)pyridine) form thermally stable η2-coordinated complexes with a variety of electron-deficient arenes. The tolerance of substituted arenes with fluorine-containing electron withdrawing groups (EWG; −F, −CF3, −SF5) is examined for both the molybdenum and tungsten systems. When the EWG contains a π bond (nitriles, aldehydes, ketones, ester), η2 coordination occurs predominantly on the nonaromatic functional group. However, complexation of the tungsten complex with trimethyl orthobenzoate (PhC(OMe)3) followed by hydrolysis allows access to an η2-coordinated arene with an ester substituent. In general, the tungsten system tolerates sulfur-based withdrawing groups well (e.g., PhSO2Ph, MeSO2Ph), and the integration of multiple electron-withdrawing groups on a benzene ring further enhances the π-back-bonding interaction between the metal and aromatic ligand. While the molybdenum system did not form stable η2-arene complexes with the sulfones or ortho esters, it was capable of forming rare examples of stable η2-coordinated arene complexes with a range of fluorinated benzenes (e.g., fluorobenzene, difluorobenzenes). In contrast to what has been observed for the tungsten system, these complexes formed without interference of C–H or C–F insertion. 
    more » « less
  5. Abstract The use of boron Lewis acids as instigators of bond cleavage offers a number of synthetic possibilities. A unique feature of this class of reagents is the ability to functionalize otherwise inert C–F bonds. We summarize notable developments in C–F bond halogen exchange using Lewis acidic boron reagents and we conclude by featuring our group’s advances in activating CF3 groups by using boron trihalides. 1 Introduction 2 Boron-Mediated Halogen Exchange 3 Mono-Selective C–F Activation 4 Conclusions 
    more » « less