skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early Diagenesis in the Hypoxic and Acidified Zone of the Northern Gulf of Mexico: Is Organic Matter Recycling in Sediments Disconnected From the Water Column?
Hypoxia and associated acidification are growing concerns for ecosystems and biogeochemical cycles in the coastal zone. The northern Gulf of Mexico (nGoM) has experienced large seasonal hypoxia for decades linked to the eutrophication of the continental shelf fueled by the Mississippi River nutrient discharge. Sediments play a key role in maintaining hypoxic and acidified bottom waters, but this role is still not completely understood. In the summer 2017, when the surface area of the hypoxic zone in the nGoM was the largest ever recorded, we investigated four stations on the continental shelf differentially influenced by river inputs of the Mississippi-Atchafalaya River System and seasonal hypoxia. We investigated diagenetic processes under normoxic, hypoxic, and nearly anoxic bottom waters by coupling amperometric, potentiometric, and voltammetric microprofiling with high-resolution diffusive equilibrium in thin-films (DET) profiles and porewater analyses. In addition, we used a time-series of bottom-water dissolved oxygen from May to November 2017, which indicated intense O 2 consumption in bottom waters related to organic carbon recycling. At the sediment-water interface (SWI), we found that oxygen consumption linked to organic matter recycling was large with diffusive oxygen uptake (DOU) of 8 and 14 mmol m –2 d –1 , except when the oxygen concentration was near anoxia (5 mmol m –2 d –1 ). Except at the station located near the Mississippi river outlet, the downcore pore water sulfate concentration decrease was limited, with little increase in alkalinity, dissolved inorganic carbon (DIC), ammonium, and phosphate suggesting that low oxygen conditions did not promote anoxic diagenesis as anticipated. We attributed the low anoxic diagenesis intensity to a limitation in organic substrate supply, possibly linked to the reduction of bioturbation during the hypoxic spring and summer.  more » « less
Award ID(s):
1438648
PAR ID:
10247760
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The hypoxic zone on the Louisiana Continental Shelf (LCS) forms each summer due to nutrient‐enhanced primary production and seasonal stratification associated with freshwater discharges from the Mississippi/Atchafalaya River Basin (MARB). Recent field studies have identified highly productive shallow nearshore waters as an important component of shelf‐wide carbon production contributing to hypoxia formation. This study applied a three‐dimensional hydrodynamic‐biogeochemical model named CGEM (Coastal Generalized Ecosystem Model) to quantify the spatial and temporal patterns of hypoxia, carbon production, respiration, and transport between nearshore and middle shelf regions where hypoxia is most prevalent. We first demonstrate that our simulations reproduced spatial and temporal patterns of carbon production, respiration, and bottom‐water oxygen gradients compared to field observations. We used multiyear simulations to quantify transport of particulate organic carbon (POC) from nearshore areas where riverine organic matter and phytoplankton carbon production are greatest. The spatial displacement of carbon production and respiration in our simulations was created by westward and offshore POC flux via phytoplankton carbon flux in the surface layer and POC flux in the bottom layer, supporting heterotrophic respiration on the middle shelf where hypoxia is frequently observed. These results support existing studies suggesting the importance of offshore carbon flux to hypoxia formation, particularly on the west shelf where hypoxic conditions are most variable. 
    more » « less
  2. St Helena Bay (SHB), a retentive zone in the productive southern Benguela Upwelling System off western South Africa, experiences seasonal hypoxia and episodic anoxic events that threaten local fisheries. To understand the drivers of oxygen variability in SHB, we queried 25 years of dissolved oxygen (DO) observations alongside high‐resolution wind and hydrographic data, and dynamical data from a high‐resolution model. At 70 m in SHB (mid‐bay), upwelling‐favorable winds in spring drove replenishment of cold, oxygenated water. Hypoxia developed in summer, becoming most severe in autumn. Bottom waters in autumn were replenished with warmer, less oxygenated water than in spring—suggesting a seasonal change in source waters upwelled into the bay. Downwelling and deep mixing in winter ventilated mid‐bay bottom waters, which reverted to hypoxic conditions during wind relaxations and reversals. In the nearshore (20 m), hypoxia occurred specifically during periods of upwelling‐favorable wind stress and was most severe in autumn. Using a statistical model, we extended basic hydrographic observations to nitrate and DO concentrations and developed metrics to identify the accumulation of excess nutrients on the shelf and nitrogen‐loss to denitrification, both of which were most prominent in autumn. A correspondence of the biogeochemical properties of hypoxic waters at 20 m to those at 70 m implicates the latter as the source waters upwelled inshore in autumn. We conclude that wind‐driven upwelling drives the replenishment of respired bottom waters in SHB with oxygenated waters, noting that less‐oxygenated water is imported later in the upwelling season, which exacerbates hypoxia. 
    more » « less
  3. Abstract Widespread hypoxia occurs seasonally across the Oregon continental shelf, and the duration, intensity, and frequency of hypoxic events have increased in recent years. In hypoxic regions, iron reduction can liberate dissolved Fe(II) from continental shelf sediments. Fe(II) was measured in the water column across the continental shelf and slope on the Oregon coast during summer 2022 using both a trace metal clean rosette and a high‐resolution benthic gradient sampler. In the summer, Fe(II) concentrations were exceptionally high (40–60 nM) within bottom waters and ubiquitous across the Oregon shelf, reflecting the low oxygen condition (40–70 μM) at that time. The observed inverse correlation between Fe(II) and bottom water oxygen concentrations is in agreement with expectations based on previous work that demonstrates oxygen is a major determinant of benthic Fe fluxes. Rapid attenuation of Fe(II) from the benthic boundary layer (within 1 m of the seafloor) probably reflects efficient cross‐shelf advection. One region, centered around Heceta Bank (~ 44°N) acts a hotspot for Fe release on the Oregon continental shelf, likely due to its semi‐retentive nature and high percent mud content in sediment. The results suggest that hypoxia is an important determinant of the inventory of iron is Oregon shelf waters and thus ultimately controls the importance of continental margin‐derived iron to the interior of the North Pacific Basin. 
    more » « less
  4. Abstract Iodine cycling in the ocean is closely linked to productivity, organic carbon export, and oxygenation. However, iodine sources and sinks at the seafloor are poorly constrained, which limits the applicability of iodine as a biogeochemical tracer. We present pore water and solid phase iodine data for sediment cores from the Peruvian continental margin, which cover a range of bottom water oxygen concentrations, organic carbon rain rates and sedimentation rates. By applying a numerical reaction‐transport model, we evaluate how these parameters determine benthic iodine fluxes and sedimentary iodine‐to‐organic carbon ratios (I:Corg) in the paleo‐record. Iodine is delivered to the sediment with organic material and released into the pore water as iodide (I) during early diagenesis. Under anoxic conditions in the bottom water, most of the iodine delivered is recycled, which can explain the presence of excess dissolved iodine in near‐shore anoxic seawater. According to our model, the benthic Iefflux in anoxic areas is mainly determined by the organic carbon rain rate. Under oxic conditions, pore water dissolved Iis oxidized and precipitated at the sediment surface. Much of the precipitated iodine re‐dissolves during early diagenesis and only a fraction is buried. Particulate iodine burial efficiency and I:Corgburial ratios do increase with bottom water oxygen. However, multiple combinations of bottom water oxygen, organic carbon rain rate and sedimentation rate can lead to identical I:Corg, which limits the utility of I:Corgas a quantitative oxygenation proxy. Our findings may help to better constrain the ocean's iodine mass balance, both today and in the geological past. 
    more » « less
  5. Transport processes along the river-ocean continuum influence delivery of nutrients, carbon and trace metals from terrestrial systems to the marine environment, impacting coastal primary productivity and water quality. Although trace metal transformations have been studied extensively in the Mississippi River Delta region of the Northern Gulf of Mexico, investigations of manganese (Mn) and the presence of ligand-stabilized, dissolved manganese (Mn(III)-L) and its role in the transformation of trace elements and organic matter during riverine transport and estuarine mixing have not been considered. This study examined the chemical speciation of dissolved and particulate Mn in the water column and sediment porewaters in the Mississippi River and Northern Gulf of Mexico in March of 2021 to explore transformations in Mn speciation along the river-ocean continuum and the impact of different processes on the distribution of Mn. Total dissolved Mn concentrations were highest in the Mississippi River and decreased offshore, while Mn(III)-L contributed most to the dissolved Mn pool in near-shore waters. Porewater profiles indicated that ligand stabilization prevented dissolved Mn(III) reduction below the depth of oxygen penetration and in the presence of equimolar dissolved iron(II). Dissolved Mn(III)-L was enriched in bottom waters at all Northern Gulf of Mexico stations, and diffusive flux modelling of porewater dissolved Mn suggested that reducing sediments were a source of dissolved Mn to the overlying water column in the form of both reduced Mn(II) and Mn(III)-L. A simple box model of the Mn cycle in the Northern Gulf of Mexico indicates that Mn(III)-L is required to balance the Mn budget in this region and is an integral, and previously unconsidered, piece of the Mn cycle in the Northern Gulf of Mexico. The presence of Mn(III)-L in this system likely has an outsized impact on trace element scavenging rates, oxidative capacity, and the carbon cycle that have not been previously appreciated. 
    more » « less