skip to main content


Title: Early Diagenesis in the Hypoxic and Acidified Zone of the Northern Gulf of Mexico: Is Organic Matter Recycling in Sediments Disconnected From the Water Column?
Hypoxia and associated acidification are growing concerns for ecosystems and biogeochemical cycles in the coastal zone. The northern Gulf of Mexico (nGoM) has experienced large seasonal hypoxia for decades linked to the eutrophication of the continental shelf fueled by the Mississippi River nutrient discharge. Sediments play a key role in maintaining hypoxic and acidified bottom waters, but this role is still not completely understood. In the summer 2017, when the surface area of the hypoxic zone in the nGoM was the largest ever recorded, we investigated four stations on the continental shelf differentially influenced by river inputs of the Mississippi-Atchafalaya River System and seasonal hypoxia. We investigated diagenetic processes under normoxic, hypoxic, and nearly anoxic bottom waters by coupling amperometric, potentiometric, and voltammetric microprofiling with high-resolution diffusive equilibrium in thin-films (DET) profiles and porewater analyses. In addition, we used a time-series of bottom-water dissolved oxygen from May to November 2017, which indicated intense O 2 consumption in bottom waters related to organic carbon recycling. At the sediment-water interface (SWI), we found that oxygen consumption linked to organic matter recycling was large with diffusive oxygen uptake (DOU) of 8 and 14 mmol m –2 d –1 , except when the oxygen concentration was near anoxia (5 mmol m –2 d –1 ). Except at the station located near the Mississippi river outlet, the downcore pore water sulfate concentration decrease was limited, with little increase in alkalinity, dissolved inorganic carbon (DIC), ammonium, and phosphate suggesting that low oxygen conditions did not promote anoxic diagenesis as anticipated. We attributed the low anoxic diagenesis intensity to a limitation in organic substrate supply, possibly linked to the reduction of bioturbation during the hypoxic spring and summer.  more » « less
Award ID(s):
1438648
NSF-PAR ID:
10247760
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hypoxic zone on the Louisiana Continental Shelf (LCS) forms each summer due to nutrient‐enhanced primary production and seasonal stratification associated with freshwater discharges from the Mississippi/Atchafalaya River Basin (MARB). Recent field studies have identified highly productive shallow nearshore waters as an important component of shelf‐wide carbon production contributing to hypoxia formation. This study applied a three‐dimensional hydrodynamic‐biogeochemical model named CGEM (Coastal Generalized Ecosystem Model) to quantify the spatial and temporal patterns of hypoxia, carbon production, respiration, and transport between nearshore and middle shelf regions where hypoxia is most prevalent. We first demonstrate that our simulations reproduced spatial and temporal patterns of carbon production, respiration, and bottom‐water oxygen gradients compared to field observations. We used multiyear simulations to quantify transport of particulate organic carbon (POC) from nearshore areas where riverine organic matter and phytoplankton carbon production are greatest. The spatial displacement of carbon production and respiration in our simulations was created by westward and offshore POC flux via phytoplankton carbon flux in the surface layer and POC flux in the bottom layer, supporting heterotrophic respiration on the middle shelf where hypoxia is frequently observed. These results support existing studies suggesting the importance of offshore carbon flux to hypoxia formation, particularly on the west shelf where hypoxic conditions are most variable.

     
    more » « less
  2. Abstract

    High‐accuracy spectrophotometric pH measurements were taken during a summer cruise to study the pH dynamics and its controlling mechanisms in the northern Gulf of Mexico in hypoxia season. Using the recently available dissociation constants of the purified m‐cresol purple (Douglas & Byrne, 2017,https://doi.org/10.1016/j.marchem.2017.10.001; Müller & Rehder, 2018,https://doi.org/10.3389/fmars.2018.00177), spectrophotometrically measured pH showed excellent agreement with pH calculated from dissolved inorganic carbon (DIC) and total alkalinity over a wide salinity range of 0 to 36.9 (0.005 ± 0.016,n= 550). The coupled changes in DIC, oxygen, and nutrients suggest that biological production of organic matter in surface water and the subsequent aerobic respiration in subsurface was the dominant factor regulating pH variability in the nGOM in summer. The highest pH values were observed, together with the maximal biological uptake of DIC and nutrients, at intermediate salinities in the Mississippi and Atchafalaya plumes where light and nutrient conditions were favorable for phytoplankton growth. The lowest pH values (down to 7.59) were observed along with the highest concentrations of DIC and apparent oxygen utilization in hypoxic bottom waters. The nonconservative pH changes in both surface and bottom waters correlated well with the biologically induced changes in DIC, that is, per 100‐μmol/kg biological removal/addition of DIC resulted in 0.21 unit increase/decrease in pH. Coastal bottom water with lower pH buffering capacity is more susceptible to acidification from anthropogenic CO2invasion but reduction in eutrophication may offset some of the increased susceptibility to acidification.

     
    more » « less
  3. Abstract

    One of the largest human‐caused areas of bottom‐water oxygen deficiency in the coastal ocean is on the northern Gulf of Mexico continental shelf adjacent to the Mississippi River, which discharges nitrogen and phosphorus loads into its surface waters. The beginnings of seasonal hypoxia (≤2 mg l−1dissolved oxygen) in this area was in the 1950s with an acceleration in the worsening of severity during the 1970s. Currently, the bottom area of hypoxic areas can approach 23,000 km2, and the volume, 140 km3. Ecosystems, people, and economies are now at risk within the Mississippi River watershed and in the northern Gulf of Mexico. Strengthened nitrogen and phosphorus mitigation, altered agriculture practices, and reduction in carbon and nutrient footprints are key to the recovery of these systems. In this article, we review the past, present, and possible future conditions of the northern Gulf of Mexico and provide insight into possible management actions.

     
    more » « less
  4. Abstract

    Decomposition of particulate organic matter (POM) plays a key role in the formation of hypoxia in subsurface waters of coastal ocean, yet little is known about the lability and transformation of POM in the hypoxic zone. Suspended particles were collected from surface waters to overlying waters (~30 cm above the sediment‐water interface) along the shelf of northern Gulf of Mexico (nGOM) in late spring/early summer of 2010–2013. Total hydrolyzable amino acids (THAA) and pigments were measured in these particulate samples to trace organic matter lability. The degradation indices, derived from the THAA and chloropigments, were positively correlated with dissolved oxygen (DO) concentrations in the shelf region, suggesting that decomposition of POM contributed greatly to DO utilization. Bacterial degradation appears to be the major pathway for POM decomposition on both inner and mid shelves, while zooplankton grazing played a minor role. POM samples in the overlying water on the inner shelf were the most degraded from the THAA and pigment results, and they also had high C/N ratios (9–14) and depleted δ13C values (−29‰ to −24‰), pointing to a source of terrestrial C3 plant material. This distinct terrestrial signal of POM in the overlying water suggests strong selective degradation of marine‐sourced organic matter, but how the terrestrial organic matter is settled to this layer and its ultimate fate remain unclear. Taken together, these data offer new angles looking into the lability and degradation pathways of POM, and mechanisms of hypoxia formation in coastal waters.

     
    more » « less
  5. Abstract

    Widespread hypoxia occurs seasonally across the Oregon continental shelf, and the duration, intensity, and frequency of hypoxic events have increased in recent years. In hypoxic regions, iron reduction can liberate dissolved Fe(II) from continental shelf sediments. Fe(II) was measured in the water column across the continental shelf and slope on the Oregon coast during summer 2022 using both a trace metal clean rosette and a high‐resolution benthic gradient sampler. In the summer, Fe(II) concentrations were exceptionally high (40–60 nM) within bottom waters and ubiquitous across the Oregon shelf, reflecting the low oxygen condition (40–70 μM) at that time. The observed inverse correlation between Fe(II) and bottom water oxygen concentrations is in agreement with expectations based on previous work that demonstrates oxygen is a major determinant of benthic Fe fluxes. Rapid attenuation of Fe(II) from the benthic boundary layer (within 1 m of the seafloor) probably reflects efficient cross‐shelf advection. One region, centered around Heceta Bank (~ 44°N) acts a hotspot for Fe release on the Oregon continental shelf, likely due to its semi‐retentive nature and high percent mud content in sediment. The results suggest that hypoxia is an important determinant of the inventory of iron is Oregon shelf waters and thus ultimately controls the importance of continental margin‐derived iron to the interior of the North Pacific Basin.

     
    more » « less