skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing
Model representations of plankton structure and dynamics have consequences for a broad spectrum of ocean processes. Here we focus on the representation of zooplankton and their grazing dynamics in such models. It remains unclear whether phytoplankton community composition, growth rates, and spatial patterns in plankton ecosystem models are especially sensitive to the specific means of representing zooplankton grazing. We conduct a series of numerical experiments that explicitly address this question. We focus our study on the form of the functional response to changes in prey density, including the formulation of a grazing refuge. We use a contemporary biogeochemical model based on continuum size-structured organization, including phytoplankton diversity, coupled to a physical model of the California Current System. This region is of particular interest because it exhibits strong spatial gradients. We find that small changes in grazing refuge formulation across a range of plausible functional forms drive fundamental differences in spatial patterns of plankton concentrations, species richness, pathways of grazing fluxes, and underlying seasonal cycles. An explicit grazing refuge, with refuge prey concentration dependent on grazers’ body size, using allometric scaling, is likely to provide more coherent plankton ecosystem dynamics compared to classic formulations or size-independent threshold refugia. We recommend that future plankton ecosystem models pay particular attention to the grazing formulation and implement a threshold refuge incorporating size-dependence, and we call for a new suite of experimental grazing studies.  more » « less
Award ID(s):
1637632
PAR ID:
10247772
Author(s) / Creator(s):
; ;
Editor(s):
Gorokhova, Elena
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
5
ISSN:
1932-6203
Page Range / eLocation ID:
e0252033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beisner, Beatrix E (Ed.)
    Abstract Consumer nutrient recycling influences aquatic ecosystem functioning by altering the movement and transformation of nutrients. In hypereutrophic reservoirs, zooplankton nutrient recycling has been considered negligible due to high concentrations of available nutrients. A comparative analysis ( Moody and Wilkinson, 2019) found that zooplankton communities in hypereutrophic lakes are dominated by nitrogen (N)-rich species, which the authors hypothesized would increase phosphorus (P) availability through excretion. However, zooplankton nutrient recycling likely varies over the course of a growing season due to changes in biomass, community composition and grazing pressure on phytoplankton. We quantified zooplankton, phytoplankton and nutrient concentration dynamics during the summer of 2019 in a temperate, hypereutrophic reservoir. We found that the estimated contribution of zooplankton excretion to the dissolved nutrient pool on a given day was equivalent to a substantial proportion (21–39%) of the dissolved inorganic P standing stock in early summer when P concentrations were low and limiting phytoplankton growth. Further, we found evidence that zooplankton affected phytoplankton size distributions through selective grazing of smaller phytoplankton cells likely affecting nutrient uptake and storage by phytoplankton. Overall, our results demonstrate zooplankton excretion in hypereutrophic reservoirs likely helped drive springtime phytoplankton dynamics through nutrient recycling while grazing influenced phytoplankton size distributions. 
    more » « less
  2. Abstract The Antarctic krillEuphausia superbais often considered an herbivore but is notable for its trophic flexibility, which includes feeding on protistan and metazoan zooplankton. Characterizing krill trophic position (TP) is important for understanding carbon and energy flow from phytoplankton to vertebrate predators and to the deep ocean, especially as plankton composition is sensitive to changing climate. We used repeated field sampling and experiments to study feeding by juvenile krill during three austral summers in waters near Palmer Station, Antarctica. Our approach was to combine seasonal carbon budgets, gut fluorescence measurements, imaging flow cytometry, and compound‐specific isotope analysis of amino acids. Field measurements coupled to experimentally derived grazing functional response curves suggest that phytoplankton grazing alone was insufficient to support the growth and basal metabolism of juvenile krill. Phytoplankton consumption by juvenile krill was limited due to inefficient feeding on nanoplankton (2–20 μm), which constituted the majority of autotrophic prey. Mean krill TP and the metazoan dietary fraction increased in years with higher mesozooplankton biomass, which was not coupled to phytoplankton biomass. Comparing TP estimates using δ15N of different amino acids indicated a substantial and consistent food‐web contribution from heterotrophic protists. Phytoplankton, metazoans, and heterotrophic protists all were important contributors to a diverse krill diet that changed substantially among years. Juvenile krill fed mostly on heterotrophic prey during summer near Palmer Station, and this food web complexity should be considered more broadly throughout the changing Southern Ocean. 
    more » « less
  3. Abstract Surface‐ocean mixing creates dynamic light environments with predictable effects on phytoplankton growth but unknown consequences for predation. We investigated how variations in average mixed‐layer (ML) irradiance shaped plankton trophic dynamics by incubating a Northwest‐Atlantic plankton community for 4 days at high (H) and low (L) light, followed by exposure to either sustained or reversed light intensities. In deep‐ML (sustained L), phytoplankton biomass declined (μ= −0.2 ± 0.08 d−1) and grazing was absent. In shallow‐ML (sustained H), growth exceeded grazing (μ= 0.46 ± 0.07 d−1;g= 0.32 ± 0.04 d−1). In rapidly changing ML‐conditions simulated by switching light‐availability, growth and grazing responded on different timescales. During rapid ML‐shoaling (L to H),μimmediately increased (0.23 ± 0.01 d−1) with no change in grazing. During rapid ML‐deepening (H to L),μimmediately decreased (0.02 ± 0.09 d−1), whereas grazing remained high (g= 0.38 ± 0.05 d−1). Predictable rate responses of phytoplankton growth (rapid) vs. grazing (delayed) to measurable light variability can provide insights into predator‐prey processes and their effects on spatio‐temporal dynamics of phytoplankton biomass. 
    more » « less
  4. Abstract. We extend the ecological component (ECOGEM) of the carbon-centric Grid-Enabled Integrated Earth system model (cGEnIE) to include a diatom functional group. ECOGEM represents plankton community dynamics via a spectrum of ecophysiological traits originally based on size and plankton food web (phyto- and zooplankton; EcoGEnIE 1.0), which we developed here to account for a diatom functional group (EcoGEnIE 1.1). We tuned EcoGEnIE 1.1, exploring a range of ecophysiological parameter values specific to phytoplankton, including diatom growth and survival (18 parameters over 550 runs) to achieve best fits to observations of diatom biogeography and size class distribution as well as to global ocean nutrient and dissolved oxygen distributions. This, in conjunction with a previously developed representation of opal dissolution and an updated representation of the ocean iron cycle in the water column, resulted in an improved distribution of dissolved oxygen in the water column relative to the previous EcoGEnIE 1.0, with global export production (7.4 Gt C yr−1) now closer to previous estimates. Simulated diatom biogeography is characterised by larger size classes dominating at high latitudes, notably in the Southern Ocean, and smaller size classes dominating at lower latitudes. Overall, diatom biological productivity accounts for ∼20 % of global carbon biomass in the model, with diatoms outcompeting other phytoplankton functional groups when dissolved silica is available due to their faster maximum photosynthetic rates and reduced palatability to grazers. Adding a diatom functional group provides the cGEnIE Earth system model with an extended capability to explore ecological dynamics and their influence on ocean biogeochemistry. 
    more » « less
  5. Miki, Takeshi (Ed.)
    Marine herbivorous protists are often the dominant grazers of primary production. We developed a size-based model with flexible size-based grazing to encapsulate taxonomic and behavioral diversity. We examined individual and combined grazing impacts by three consumer sizes that span the size range of protistan grazers– 5, 50, and 200 μm—on a size-structured phytoplankton community. Prey size choice and dietary niche width varied with consumer size and with co-existence of other consumers. When all consumer sizes were present, distinct dietary niches emerged, with a range of consumer-prey size ratios spanning from 25:1 to 0.4:1, encompassing the canonical 10:1 often assumed. Grazing on all phytoplankton size classes maximized the phytoplankton size diversity through the keystone predator effect, resulting in a phytoplankton spectral slope of approximately -4, agreeing with field data. This mechanistic model suggests the observed size structure of phytoplankton communities is at least in part the result of selective consumer feeding. 
    more » « less