skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Light fluctuations are key in modulating plankton trophic dynamics and their impact on primary production
Abstract Surface‐ocean mixing creates dynamic light environments with predictable effects on phytoplankton growth but unknown consequences for predation. We investigated how variations in average mixed‐layer (ML) irradiance shaped plankton trophic dynamics by incubating a Northwest‐Atlantic plankton community for 4 days at high (H) and low (L) light, followed by exposure to either sustained or reversed light intensities. In deep‐ML (sustained L), phytoplankton biomass declined (μ= −0.2 ± 0.08 d−1) and grazing was absent. In shallow‐ML (sustained H), growth exceeded grazing (μ= 0.46 ± 0.07 d−1;g= 0.32 ± 0.04 d−1). In rapidly changing ML‐conditions simulated by switching light‐availability, growth and grazing responded on different timescales. During rapid ML‐shoaling (L to H),μimmediately increased (0.23 ± 0.01 d−1) with no change in grazing. During rapid ML‐deepening (H to L),μimmediately decreased (0.02 ± 0.09 d−1), whereas grazing remained high (g= 0.38 ± 0.05 d−1). Predictable rate responses of phytoplankton growth (rapid) vs. grazing (delayed) to measurable light variability can provide insights into predator‐prey processes and their effects on spatio‐temporal dynamics of phytoplankton biomass.  more » « less
Award ID(s):
1655221
PAR ID:
10375742
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
5
Issue:
5
ISSN:
2378-2242
Page Range / eLocation ID:
p. 346-353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Herbivorous consumption of primary production is a key transformation in global biogeochemical cycles, directing matter and energy either to higher trophic levels, export production, or remineralization. Grazing by microzooplankton is often poorly constrained, particularly in dynamic coastal systems. Temperate coastal areas are seasonally and spatially variable, which presents both challenges and opportunities to identify patterns and drivers of grazing pressure. Here we report on two winter and one summer week‐long cruises (2018–2019), as part of the new Northeast U.S. Shelf Long‐Term Ecological Research program. During both seasons, coastal waters were colder and fresher, and had higher phytoplankton biomass than waters at the shelf break. The phytoplankton community was dominated by large cells in winter and by small cells in summer. Phytoplankton growth rates ranged from < 0.5 d−1in winter and up to 1.4 d−1in summer and were strongly correlated to temperature, to light availability, and to phytoplankton community size‐structure. Grazing rates were not correlated with total chlorophyll a, which points to other biological drivers, including species composition in predator‐prey interactions at the first trophic level. The percentage of primary production consumed (%PP) indicated higher trophic transfer in winter (%PP > 50%) than during summer (%PP < 20%), highlighting seasonal shifts in planktonic food web structure and function. These results imply that predictable shifts in environmental conditions can be linked to ecosystem shifts in net primary production. Hierarchies of variability, from localized to interannual and long‐term climate driven, can be understood within the context of sustained measurements of ecosystem properties and function. 
    more » « less
  2. Abstract We investigated competition betweenSalpa thompsoniand protistan grazers during Lagrangian experiments near the Subtropical Front in the southwest Pacific sector of the Southern Ocean. Over a month, the salp community shifted from dominance by large (> 100 mm) oozooids and small (< 20 mm) blastozooids to large (~ 60 mm) blastozooids. Phytoplankton biomass was consistently dominated by nano‐ and microphytoplankton (> 2 μm cells). Using bead‐calibrated flow‐cytometry light scatter to estimate phytoplankton size, we quantified size‐specific salp and protistan zooplankton grazing pressure. Salps were able to feed at a > 10,000 : 1 predator : prey size (linear‐dimension) ratio. Small blastozooids efficiently retained cells > 1.4μm (high end of picoplankton size, 0.6–2 μm cells) and also obtained substantial nutrition from smaller bacteria‐sized cells. Larger salps could only feed efficiently on > 5.9μm cells and were largely incapable of feeding on picoplankton. Due to the high biomass of nano‐ and microphytoplankton, however, all salps derived most of their (phytoplankton‐based) nutrition from these larger autotrophs. Phagotrophic protists were the dominant competitors for these prey items and consumed approximately 50% of the biomass of all phytoplankton size classes each day. Using a Bayesian statistical framework, we developed an allometric‐scaling equation for salp clearance rates as a function of salp and prey size:urn:x-wiley:00243590:media:lno11770:lno11770-math-0001where ESD is prey equivalent spherical diameter (µm), TL isS. thompsonitotal length,φ = 5.6 × 10−3 ± 3.6 × 10−4,ψ = 2.1 ± 0.13,θ = 0.58 ± 0.08, andγ = 0.46 ± 0.03 and clearance rate is L d‐1salp‐1. We discuss the biogeochemical and food‐web implications of competitive interactions among salps, krill, and protozoans. 
    more » « less
  3. Abstract Transitions in phytoplankton community composition are typically attributed to ecological succession even in physically dynamic upwelling systems like the California Current Ecosystem (CCE). An expected succession from a high‐chlorophyll (~ 10μg L−1) diatom‐dominated assemblage to a low‐chlorophyll (< 1.0μg L−1) non‐diatom dominated assemblage was observed during a 2013 summer upwelling event in the CCE. Using an interdisciplinary field‐based space‐for‐time approach leveraging both biogeochemical rate measurements and metatranscriptomics, we suggest that this successional pattern was driven primarily by physical processes. An annually recurring mesoscale eddy‐like feature transported significant quantities of high‐phytoplankton‐biomass coastal water offshore. Chlorophyll was diluted during transport, but diatom contributions to phytoplankton biomass and activity (49–62% observed) did not decline to the extent predicted by dilution (18–24% predicted). Under the space‐for‐time assumption, these trends infer diatom biomass and activity and were stimulated during transport. This is hypothesized to result from decreased contact rates with mortality agents (e.g., viruses) and release from nutrient limitation (confirmed by rate data nearshore), as predicted by the Disturbance‐Recovery hypothesis of phytoplankton bloom formation. Thus, the end point taxonomic composition and activity of the phytoplankton assemblage being transported by the eddy‐like feature were driven by physical processes (mixing) affecting physiological (release from nutrient limitation, increased growth) and ecological (reduced mortality) factors that favored the persistence of the nearshore diatoms during transit. The observed connection between high‐diatom‐biomass coastal waters and non‐diatom‐dominated offshore waters supports the proposed mechanisms for this recurring eddy‐like feature moving seed populations of coastal phytoplankton offshore and thereby sustaining their activity. 
    more » « less
  4. To assess protistan grazing impact and temperature sensitivity on plankton population dynamics, we measured bulk and species-specific phytoplankton growth and herbivorous protist grazing rates in Disko Bay, West Greenland in April-May 2011. Rate estimates were made at three different temperatures in situ (0 °C), +3 °C and +6 °C over ambient. In situ Chlorophyll a (Chl a ) doubled during the observation period to ∼12  µg Chl a L −1 , with 60–97% of Chl a in the >20 µm size-fraction dominated by the diatom genus Chaetoceros. Herbivorous dinoflagellates comprised 60–80% of microplankton grazer biomass. At in situ temperatures, phytoplankton growth or grazing by herbivorous predators <200 µm was not measurable until 11 days after observations commenced. Thereafter, phytoplankton growth was on average 0.25 d −1 . Phytoplankton mortality due to herbivorous grazing was only measured on three occasions but the magnitude was substantial, up to 0.58 d −1 . Grazing of this magnitude removed ∼100% of primary production. In short-term temperature-shift incubation experiments, phytoplankton growth rate increased significantly (20%) at elevated temperatures. In contrast, herbivorous protist grazing and species-specific growth rates decreased significantly (50%) at +6 °C. This differential response in phytoplankton and herbivores to temperature increases resulted in a decrease of primary production removed with increasing temperature. Phaeocystis spp. abundance was negatively correlated with bulk grazing rate. Growth and grazing rates were variable but showed no evidence of an inherent, low temperature limitation. Herbivorous protist growth rates in this study and in a literature review were comparable to rates from temperate waters. Thus, an inherent physiological inhibition of protistan growth or grazing rates in polar waters is not supported by the data. The large variability between lack of grazing and high rates of primary production removal observed here and confirmed in the literature for polar waters implies larger amplitude fluctuations in phytoplankton biomass than slower, steady grazing losses of primary production. 
    more » « less
  5. Abstract The Antarctic krillEuphausia superbais often considered an herbivore but is notable for its trophic flexibility, which includes feeding on protistan and metazoan zooplankton. Characterizing krill trophic position (TP) is important for understanding carbon and energy flow from phytoplankton to vertebrate predators and to the deep ocean, especially as plankton composition is sensitive to changing climate. We used repeated field sampling and experiments to study feeding by juvenile krill during three austral summers in waters near Palmer Station, Antarctica. Our approach was to combine seasonal carbon budgets, gut fluorescence measurements, imaging flow cytometry, and compound‐specific isotope analysis of amino acids. Field measurements coupled to experimentally derived grazing functional response curves suggest that phytoplankton grazing alone was insufficient to support the growth and basal metabolism of juvenile krill. Phytoplankton consumption by juvenile krill was limited due to inefficient feeding on nanoplankton (2–20 μm), which constituted the majority of autotrophic prey. Mean krill TP and the metazoan dietary fraction increased in years with higher mesozooplankton biomass, which was not coupled to phytoplankton biomass. Comparing TP estimates using δ15N of different amino acids indicated a substantial and consistent food‐web contribution from heterotrophic protists. Phytoplankton, metazoans, and heterotrophic protists all were important contributors to a diverse krill diet that changed substantially among years. Juvenile krill fed mostly on heterotrophic prey during summer near Palmer Station, and this food web complexity should be considered more broadly throughout the changing Southern Ocean. 
    more » « less