skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Cerium( iv ) complexes with guanidinate ligands: intense colors and anomalous electronic structures
A series of cerium( iv ) mixed-ligand guanidinate–amide complexes, {[(Me 3 Si) 2 NC(N i Pr) 2 ] x Ce IV [N(SiMe 3 ) 2 ] 3−x } + ( x = 0–3), was prepared by chemical oxidation of the corresponding cerium( iii ) complexes, where x = 1 and 2 represent novel complexes. The Ce( iv ) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy ( n f ) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce( iv ) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce( iv ) oxidation state with more guanidinate ligands. Moreover, the Ce( iv ) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals that were close in energy to the unoccupied Ce 4f orbitals. However, the incorporation of sterically hindered guanidinate ligands inhibited optimal overlaps between Ce 5d and ligand N 2p orbitals. As a result, there was an overall decrease of ligand-to-metal donation and a less stabilized Ce( iv ) oxidation state, while at the same time, more of the donated electron density ended up in the 4f shell. The results indicate that incorporating guanidinate ligands into Ce( iv ) complexes gives rise to intense charge transfer bands and noteworthy electronic structures, providing insights into the stabilization of tetravalent lanthanide oxidation states.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Page Range / eLocation ID:
3558 to 3567
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A family of cerium complexes featuring a redox‐active ligand in different oxidation states has been synthesized, including the the iminosemiquinone (isq)1−compound, Ce(dippisq)3(1‐Ceisq), and the amidophenolate (ap)2−species CeIII(dippap)3K3(2‐Ceap), [CeIII(dippap)3K][K(18‐c‐6)]2(2‐Ceap 18c6), and [CeIII(dippap)3K][K(15‐c‐5)2]2(2‐Ceap 15c5). Treating2‐Ceap 15c5with dioxogen furnishes the cerium(IV) derivative [CeIV(dippap)3][K(15‐c‐5)2]2(3‐Ceap 15c5), and an analogous synthesis can be used to generate [CeIV(dippap)3][K(crypt)]2(3‐Ceap crypt). Similarly, addition of hexamethyldisiloxane produces an interesting bis(amidophenolate) species, [(Me3SiO)2CeIV(dippap)2][K(15‐c‐5)2]2(4‐CeOSiMe3). Full spectroscopic and structural characterization of each derivative was performed to establish the oxidation states of both the ligands and the cerium ions.

    more » « less
  2. This study presents the role of 5d orbitals in the bonding, and electronic and magnetic structure of Ce imido and oxo complexes synthesized with a tris(hydroxylaminato) [((2- t BuNO)C 6 H 4 CH 2 ) 3 N] 3− (TriNO x 3− ) ligand framework, including the reported synthesis and characterization of two new alkali metal-capped Ce oxo species. X-ray spectroscopy measurements reveal that the imido and oxo materials exhibit an intermediate valent ground state of the Ce, displaying hallmark features in the Ce L III absorption of partial f-orbital occupancy that are relatively constant for all measured compounds. These spectra feature a double peak consistent with other formal Ce( iv ) compounds. Magnetic susceptibility measurements reveal enhanced levels of temperature-independent paramagnetism (TIP). In contrast to systems with direct bonding to an aromatic ligand, no clear correlation between the level of TIP and f-orbital occupancy is observed. CASSCF calculations defy a conventional van Vleck explanation of the TIP, indicating a single-reference ground state with no low-lying triplet excited state, despite accurately predicting the measured values of f-orbital occupancy. The calculations do, however, predict strong 4f/5d hybridization. In fact, within these complexes, despite having similar f-orbital occupancies and therefore levels of 4f/5d hybridization, the d-state distributions vary depending on the bonding motif (CeO vs. CeN) of the complex, and can also be fine-tuned based on varying alkali metal cation capping species. This system therefore provides a platform for understanding the characteristic nature of Ce multiple bonds and potential impact that the associated d-state distribution may have on resulting reactivity. 
    more » « less
  3. Increasing lanthanide demand to support clean energy goals drives the need to develop more efficient approaches to separate adjacent lanthanides. Most approaches for lanthanide separations are not very selective and are based on small differences in lanthanide ionic radii. Concentrated potassium carbonate media has shown some potential to enable oxidation of praseodymium (Pr) and terbium (Tb) to their tetravalent states, which could ultimately enable a separation based on differences in oxidation states, but very little is known regarding the system’s chemistry. This work completes a detailed examination of cerium (Ce) redox chemistry in concentrated carbonate media to support the development of Pr and Tb oxidation studies. The half-wave potential (E 1/2 ) of the Ce(III)/(IV) redox couple is evaluated under various solution conditions and computational modeling of carbonate coordination environments is discussed. Cyclic voltammetry shows higher carbonate concentrations and temperatures can lower the potential required to oxidize Ce(III) by 54 mV (3.5 to 5.5 M) and 39 mV (from 10 °C to 70 °C). Chronoabsorptometry shows Ce(III) and Ce(IV) carbonate complexes are chemically stable and reversible. Computational modelling suggests the most likely coordination environment for the Ce(IV) complex is Ce(CO 3 ) 4 (OH) 5− which is less entropically favorable than the lowest energy Ce(III) complex, Ce(CO 3 ) 4 5− . 
    more » « less
  4. Two heteroleptic monocationic Ir( iii ) complexes bearing 6,6′-bis(7-benzothiazolylfluoren-2-yl)-2,2′-biquinoline as the diimine ligand with different degrees of π-conjugation were synthesized and their photophysics was investigated by spectroscopic techniques and first principles calculations. These complexes possessed two intense absorption bands at 300–380 nm and 380–520 nm in toluene that are predominantly ascribed to the diimine ligand-localized 1 π,π* transition and intraligand charge transfer ( 1 ILCT)/ 1 π,π* transitions, respectively, with the latter being mixed with minor 1 MLCT (metal-to-ligand charge transfer)/ 1 LLCT (ligand-to-ligand charge transfer) configurations. Both complexes also exhibited a spin-forbidden, very weak 3 MLCT/ 3 LLCT/ 3 π,π* absorption band at 520–650 nm. The emission of these complexes appeared in the red spectral region ( λ em : 640 nm for Ir-1 and 648 nm for Ir-2 in toluene) with a quantum yield of <10% and a lifetime of hundreds of ns, which emanated from the 3 ILCT/ 3 π,π* state. The 3 ILCT/ 3 π,π* state also gave rise to broad and moderately strong transient absorption (TA) at ca. 480–800 nm. Extending the π-conjugation of the diimine ligand via inserting CC triplet bonds between the 7-benzothiazolylfluoren-2-yl substituents and 2,2′-biquinoline slightly red-shifted the absorption bands, the emission bands, and the TA bands in Ir-2 compared to those in Ir-1 that lacks the connecting CC triplet bonds in the diimine ligand. The stronger excited-state absorption with respect to the ground-state absorption at 532 nm led to strong reverse saturable absorption (RSA) for ns laser pulses at this wavelength, with the RSA of Ir-2 being slightly stronger than that of Ir-1, which correlated well with their ratios of the excited-state to ground-state absorption cross sections ( σ ex / σ 0 ). These results suggest that extending the π-conjugation of the 2,2′-biquinoline ligand via incorporating the 7-benzothiazolylfluoren-2-yl substituents retained the broad but weak ground-state absorption at 500–650 nm, meanwhile increased the triplet excited-state lifetimes, which resulted in the much stronger triplet excited-state absorption in this spectral region and strong RSA at 532 nm. Thus, these complexes are promising candidates as broadband reverse saturable absorbers. 
    more » « less
  5. Near-UV excitation of non-heme Fe IV O complexes results in light intensity dependent increase in reaction rates for the oxidation of C–H bonds even at low temperature (−30 °C). The enhancement of activity is ascribed to the ligand-to-[Fe IV O] charge transfer character of the near-UV bands to generate a highly reactive [(L + ) Fe III –O*] species. The enhancement is not observed with visible/NIR excitation of the d–d absorption bands. 
    more » « less