- Award ID(s):
- 1800476
- NSF-PAR ID:
- 10382807
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 9
- Issue:
- 44
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 15932 to 15941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Ruthenium polypyridyl complexes have gained significant interest as photochemotherapies (PCTs) where their excited-state properties play a critical role in the photo-cytotoxicity mechanism and efficacy. Herein we report a systematic electrochemical, spectrochemical, and photophysical analysis of a series of ruthenium( ii ) polypyridyl complexes of the type [Ru(bpy) 2 (N–N)] 2+ (where bpy = 2,2′-bipyridine; N–N is a bidentate polypyridyl ligand) designed to mimic PCTs. In this series, the N–N ligand was modified through increased conjugation and/or incorporation of electronegative heteroatoms to shift the metal-to-ligand charge-transfer (MLCT) absorptions near the therapeutic window for PCTs (600–1100 nm) while incorporating steric bulk to trigger photoinduced ligand dissociation. The lowest energy MLCT absorptions were red-shifted from λ max = 454 nm to 564 nm, with emission energies decreasing from λ max = 620 nm to 850 nm. Photoinduced ligand ejection and temperature-dependent emission studies revealed an important interplay between red-shifting MLCT absorptions and accessing the dissociative 3 dd* states, with energy barriers between the 3 MLCT* and 3 dd* states ranging from 850 cm −1 to 2580 cm −1 for the complexes measured. This work demonstrates the importance of understanding both the MLCT manifold and 3 dd* state energy levels in the future design of ligands and complexes for PCT.more » « less
-
Dinuclear d 8 Pt( ii ) complexes, where two mononuclear square planar Pt( ii ) units are bridged in an “A-frame” geometry, possess photophysical properties characterised by either metal-to-ligand-(MLCT) or metal–metal–ligand-to-ligand charge transfer (MMLCT) transitions determined by the distance between the two Pt( ii ) centres. When using 8-hydroxyquinoline (8HQH) as the bridging ligand to construct novel dinuclear complexes with general formula [C^NPt(μ-8HQ)] 2 , where C^N is either 2-phenylpyridine (1) or 7,8-benzoquinoline (2), triplet ligand-centered ( 3 LC) photophysics results echoing that in a mononuclear model chromophore, [Pt(8HQ) 2 ] (3). The lengthened Pt–Pt distances of 3.255 Å (1) and 3.243 Å (2) results in a lowest energy absorption centred around 480 nm assigned as having mixed LC/MLCT character by TD-DFT, mirroring the visible absorption spectrum of 3. Additionally, 1 and 2 exhibit 3 LC photoluminescence with limited quantum yields (0.008) from broad transitions centred near 680 nm. Photoexcitation of 1–3 leads to an initially prepared excited state that relaxes within 15 ps to a 3 LC excited state centred on the 8HQ bridge, which then persists for several microseconds. All the experimental results correspond well with DFT electronic structure calculations.more » « less
-
The synthesis, photophysics, and electrochemiluminescence (ECL) of four water-soluble dinuclear Ir( iii ) and Ru( ii ) complexes (1–4) terminally-capped by 4′-phenyl-2,2′:6′,2′′-terpyridine (tpy) or 1,3-di(pyrid-2-yl)-4,6-dimethylbenzene (N^C^N) ligands and linked by a 2,7-bis(2,2′:6′,2′′-terpyridyl)fluorene with oligoether chains on C9 are reported. The impact of the tpy or N^C^N ligands and metal centers on the photophysical properties of 1–4 was assessed by spectroscopic methods including UV-vis absorption, emission, and transient absorption, and by time-dependent density functional theory (TDDFT) calculations. These complexes exhibited distinct singlet and triplet excited-state properties upon variation of the terminal-capping terdentate ligands and the metal centers. The ECL properties of complexes 1–3 with better water solubility were investigated in neutral phosphate buffer solutions (PBS) by adding tripropylamine (TPA) as a co-reactant, and the observed ECL intensity followed the descending order of 3 > 1 > 2. Complex 3 bearing the [Ru(tpy) 2 ] 2+ units displayed more pronounced ECL signals, giving its analogues great potential for further ECL study.more » « less
-
Abstract Ru(II) complexes were synthesized with π‐expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen‐1‐yl, naphthalene‐2‐yl, anthryl and pyrenyl groups) attached at a 1
H ‐imidazo[4,5‐f ][1,10]phenanthroline ligand and 4,4′‐dimethyl‐2,2′‐bipyridine (4,4′‐dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK‐MEL‐28 cells. In the SK‐MEL‐28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2–0.5 µm ) and have low dark toxicity (EC50 = 58–230 µm ). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2‐(pyren‐1‐yl)‐1H ‐imidazo[4,5‐f ][1,10]phenanthroline ligand. This high PI is in part attributed to the π‐rich character added by the pyrenyl group, and a possible low‐lying and longer‐lived3IL state due to equilibration with the3MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ∆ = 0.84), contributions from type‐I processes (oxygen radicals and radical ions) are competitive with the type‐II (1O2) process based on effects of added sodium azide and solvent deuteration. -
null (Ed.)Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying 3 MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump–probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express 3 MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended 3 MLCT lifetime (160 ps), 3 MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain, while maintaining a substantial excited-state oxidation potential for wide-ranging photochemistry––highlighted by the ability of FeNHCPZn to photoinject charges into a SnO 2 /FTO electrode in a dye-sensitized solar cell (DSSC) architecture. Concepts enumerated herein afford opportunities for replacing traditional rare-metal–based emitters for solar-energy conversion and photoluminescence applications.more » « less