skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Fresh Look at the Role of the Coupling of a Discrete State with a Pseudocontinuum State in the Stabilization Method for Characterizing Metastable States
Award ID(s):
1762337
PAR ID:
10248494
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
Volume:
12
Issue:
4
ISSN:
1948-7185
Page Range / eLocation ID:
1202 to 1206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. State-space models (SSMs) have emerged as a potential alternative architecture for building large language models (LLMs) compared to the previously ubiquitous transformer architecture. One theoretical weakness of transformers is that they cannot express certain kinds of sequential computation and state tracking (Merrill & Sabharwal, 2023), which SSMs are explicitly designed to address via their close architectural similarity to recurrent neural networks (RNNs). But do SSMs truly have an advantage (over transformers) in expressive power for state tracking? Surprisingly, the answer is no. Our analysis reveals that the expressive power of SSMs is limited very similarly to transformers: SSMs cannot express computation outside the complexity class 𝖳𝖢0. In particular, this means they cannot solve simple state-tracking problems like permutation composition. It follows that SSMs are provably unable to accurately track chess moves with certain notation, evaluate code, or track entities in a long narrative. To supplement our formal analysis, we report experiments showing that Mamba-style SSMs indeed struggle with state tracking. Thus, despite its recurrent formulation, the "state" in an SSM is an illusion: SSMs have similar expressiveness limitations to non-recurrent models like transformers, which may fundamentally limit their ability to solve real-world state-tracking problems. 
    more » « less
  2. Drones are receiving popularity with time due to their advanced mobility. Although they were initially deployed for military purposes, they now have a wide array of applications in various public and private sectors. Further deployment of drones can promote the global economic recovery from the COVID-19 pandemic. Even though drones offer a number of advantages, they have limited flying time and weight carrying capacity. Effective drone schedules may assist with overcoming such limitations. Drone scheduling is associated with optimization of drone flight paths and may include other features, such as determination of arrival time at each node, utilization of drones, battery capacity considerations, and battery recharging considerations. A number of studies on drone scheduling have been published over the past years. However, there is a lack of a systematic literature survey that provides a holistic overview of the drone scheduling problem, existing tendencies, main research limitations, and future research needs. Therefore, this study conducts an extensive survey of the scientific literature that assessed drone scheduling. The collected studies are grouped into different categories, including general drone scheduling, drone scheduling for delivery of goods, drone scheduling for monitoring, and drone scheduling with recharge considerations. A detailed review of the collected studies is presented for each of the categories. Representative mathematical models are provided for each category of studies, accompanied by a summary of findings, existing gaps in the state-of-the-art, and future research needs. The outcomes of this research are expected to assist the relevant stakeholders with an effective drone schedule design. 
    more » « less