Abstract Increased ocean temperatures have led to large‐scale declines in many ecologically important species, including kelp forests. Spatial heterogeneity across seascapes could protect kelp individuals and small populations from thermal stress and nutrient limitation. Habitat features within upwelling regions may facilitate the transport of deep, cold water into shallow systems, but little is known about the spatiotemporal occurrence or stability of these climate refugia. Kelp in climate refugia may, however, also experience other stressors, such as overgrazing by kelp herbivores, reducing their effectiveness.Here, we use high‐resolution kelp canopy maps generated from CubeSat constellation data to characterize kelp persistence in northern California following a dramatic decline in kelp abundance due to increased temperature and nutrient limitation during a severe marine heatwave and continued intense grazing pressure by purple sea urchins.Kelp persistence was associated with local areas of relatively cool water temperature and seascape features such as shallow depths and low‐complexity bathymetry, which may have provided refuge from overgrazing. However, a very small percentage of kelp forests in the region exhibited high persistence, with many forests present in only one or two of the 9 years studied. Most kelp patches were not spatially stable over time. Initially, kelp presence aligned with climate refugia, but as overgrazing emerged as the dominant driver of kelp distributions post‐2019, kelp shifted to areas that offered protection from grazing pressure.Synthesis. Cooler areas with localized upwelling acted as climate refugia during the increased ocean temperatures from the 2014–2016 marine heatwave, supporting nutrient‐rich environments and mitigating heat stress for kelp forests. However, these temperature refugia often did not spatially overlap with areas providing protection from grazing pressure, leaving kelp forests vulnerable to future warming even within temperature refugia if grazing pressure remains high.
more »
« less
Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific
Abstract Kelp forests are globally important and highly productive ecosystems, yet their persistence and protection in the face of climate change and human activity are poorly known. Here, we present a 35-year time series of high-resolution satellite imagery that maps the distribution and persistence of giant kelp (Macrocystis pyrifera) forests along ten degrees of latitude in the Northeast Pacific Ocean. We find that although 7.7% of giant kelp is protected by marine reserves, when accounting for persistence only 4% of kelp is present and protected. Protection of giant kelp decreases southerly from 20.9% in Central California, USA, to less than 1% in Baja California, Mexico, which likely exacerbates kelp vulnerability to marine heatwaves in Baja California. We suggest that a two-fold increase in the area of kelp protected by marine reserves is needed to fully protect persistent kelp forests and that conservation of climate-refugia in Baja California should be a priority.
more »
« less
- PAR ID:
- 10248727
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Under accelerating threats from climate‐change impacts, marine protected areas (MPAs) have been proposed as climate‐adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite‐derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014–2016 marine heatwave regime that occurred in the region. We also leverage a 22‐year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three‐level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators—lobster and sheephead—are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate‐adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region‐specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate‐change impacts given their local ecological contexts, and what additional measures may be needed.more » « less
-
Abstract Kelp forests are one of the earth’s most productive ecosystems and are at great risk from climate change, yet little is known regarding their current conservation status and global future threats. Here, by combining a global remote sensing dataset of floating kelp forests with climate data and projections, we find that exposure to projected marine heatwaves will increase ~6 to ~16 times in the long term (2081–2100) compared to contemporary (2001–2020) exposure. While exposure will intensify across all regions, some southern hemisphere areas which have lower exposure to contemporary and projected marine heatwaves may provide climate refugia for floating kelp forests. Under these escalating threats, less than 3% of global floating kelp forests are currently within highly restrictive marine protected areas (MPAs), the most effective MPAs for protecting biodiversity. Our findings emphasize the urgent need to increase the global protection of floating kelp forests and set bolder climate adaptation goals.more » « less
-
Abstract The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species’ population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution ofMacrocystis pyriferais composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.more » « less
-
Abstract Marine protected areas (MPAs) are an important tool for conserving coastal marine ecosystems, with well‐documented benefits for fished species. However, their potential to benefit non‐exploited species, such as primary producers in kelp forest ecosystems, is less well understood, particularly under escalating climate change impacts.In this study, we used four decades of remote sensing to examine the effects of 54 MPAs on kelp canopy coverage and assess how these effects influence kelp resilience to marine heatwaves. We developed a method for identifying paired reference (control) sites using historical satellite data and then used Before‐After Control‐Impact Paired Series analysis to examine whether the implementation of MPAs leads to increases in kelp coverage. In addition to examining changes in kelp coverage before and after MPA implementation, we also analysed the effect of MPAs on the resistance and recovery of kelp canopy coverage to a series of severe marine heatwaves in the North Pacific between 2014 and 2016.We found that the implementation of MPAs led to a modest positive effect with an 8.5% increase in kelp coverage compared to reference areas, though effects varied across MPAs.The positive effect of MPAs became more evident following the marine heatwaves, with kelp forests in MPAs showing greater recovery than in reference sites, particularly in southern California.Synthesis and applications. Our results provide empirical evidence of the potential role of MPAs as climate adaptation tools and highlight that well‐managed MPAs can support ecosystem stability under increasing climate stress.more » « less
An official website of the United States government
