skip to main content


Title: Conceptual Design and Prototyping for a Primate Health History Model
Primate models are important for understanding human conditions, especially in studies of ageing, pathology, adaptation, and evolution. However, how to integrate data from multiple disciplines and render them compatible with each other for datamining and in-depth study is always challenging. In a long-term project, we have started a collaborative research endeavor to examine the health history of a free-ranging rhesus macaque colony at Cayo Santiago, and build a knowledge model for anthropological and biomedical/translational studies of the effects of environment and genetics on bone development, aging, and pathologies. This paper discusses the conceptual design as well as the prototyping of this model and related graphical user interfaces, and how these will help future scientific queries and studies.  more » « less
Award ID(s):
1926601
NSF-PAR ID:
10248773
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Arabnia, Hamid R.; Deligiannidis, Leonidas; Tinetti, Fernando G.; Tran, Quoc-Nam
Date Published:
Journal Name:
Transactions on computational science and computational intelligence
ISSN:
2569-7072
Page Range / eLocation ID:
511-522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The visualization community has seen a rise in the adoption of user studies. Empirical user studies systematically test the assumptions that we make about how visualizations can help or hinder viewers’ performance of tasks. Although the increase in user studies is encouraging, it is vital that research on human reasoning with visualizations be grounded in an understanding of how the mind functions. Previously, there were no sufficient models that illustrate the process of decision-making with visualizations. However, Padilla et al. [41] recently proposed an integrative model for decision-making with visualizations, which expands on modern theories of visualization cognition and decision-making. In this paper, we provide insights into how cognitive models can accelerate innovation, improve validity, and facilitate replication efforts, which have yet to be thoroughly discussed in the visualization community. To do this, we offer a compact overview of the cognitive science of decision-making with visualizations for the visualization community, using the Padilla et al. [41] cognitive model as a guiding framework. By detailing examples of visualization research that illustrate each component of the model, this paper offers novel insights into how visualization researchers can utilize a cognitive framework to guide their user studies. We provide practical examples of each component of the model from empirical studies of visualizations, along with visualization implications of each cognitive process, which have not been directly addressed in prior work. Finally, this work offers a case study in utilizing an understanding of human cognition to generate a novel solution to a visualization reasoning bias in the context of hurricane forecast track visualizations. 
    more » « less
  2. Abstract

    Host–parasite dynamics are impacted by the relationship between host density and parasite transmission, and thus, all epidemiological models contain a central transmission–density function. Recent theoretical work demonstrates that this central parasite transmission function might be best represented by a nonlinear continuum from one linear extreme to another: density‐dependent transmission at low host densities to density‐independent transmission at high host densities. But how often are nonlinear transmission functions used, and when are they better at describing transmission in real host–parasite systems?

    To quantify existing modelling practices, we systematically reviewed seven representative ecology journals, finding 262 studies containing host–parasite models that contained linear and/or nonlinear transmission functions. We also reviewed the literature to find 28 experimental and observational studies that compared multiple transmission functions in real host–parasite systems, and tallied which functions were best supported in those systems. Finally, we created a flexible model simulation tool to explore and quantify the bias in model parameter estimates that is created when using an inaccurate transmission function.

    We found that most experimental and observational studies reported that nonlinear transmission–density functions outperformed simple linear transmission–density functions, supporting recent theoretical work. In contrast, most studies containing host–parasite models assumed that host density was constant and/or used a single, linear transmission function to explain how transmission rates changed with density. Using the wrong linear function and/or using a linear function when the underlying transmission–density relationship is even slightly nonlinear can substantially bias model parameter estimates, as demonstrated by our simulations over a broad parameter space.

    Some modelling studies may be using linear functions in host–parasite systems where nonlinear functions are more appropriate. If true, these models would yield substantially biased parameter estimates. To avoid such biases that compromise ecological understanding and prediction, we recommend that future studies compare multiple transmission functions, including nonlinear options, whenever possible.

     
    more » « less
  3. Context. Terrestrial exoplanets in the habitable zone are likely a common occurrence. The long-term goal is to characterize the atmospheres of dozens of such objects. The Large Interferometer For Exoplanets (LIFE) initiative aims to develop a space-based mid-infrared (MIR) nulling interferometer to measure the thermal emission spectra of such exoplanets. Aims. We investigate how well LIFE could characterize a cloudy Venus-twin exoplanet. This allows us to: (1) test our atmospheric retrieval routine on a realistic non-Earth-like MIR emission spectrum of a known planet, (2) investigate how clouds impact retrievals, and (3) further refine the LIFE requirements derived in previous Earth-centered studies. Methods. We ran Bayesian atmospheric retrievals for simulated LIFE observations of a Venus-twin exoplanet orbiting a Sun-like star located 10 pc from the observer. The LIFE SIM noise model accounted for all major astrophysical noise sources. We ran retrievals using different models (cloudy and cloud-free) and analyzed the performance as a function of the quality of the LIFE observation. This allowed us to determine how well the atmosphere and clouds are characterizable depending on the quality of the spectrum. Results. At the current minimal resolution ( R = 50) and signal-to-noise ( S / N = 10 at 11.2 μ m) requirements for LIFE, all tested models suggest a CO 2 -rich atmosphere (≥30% in mass fraction). Further, we successfully constrain the atmospheric pressure-temperature ( P–T ) structure above the cloud deck ( P–T uncertainty ≤ ± 15 K). However, we struggle to infer the main cloud properties. Further, the retrieved planetary radius ( R pl ), equilibrium temperature ( T eq ), and Bond albedo ( A B ) depend on the model. Generally, a cloud-free model performs best at the current minimal quality and accurately estimates R pl , T eq , and A B . If we consider higher quality spectra (especially S / N = 20), we can infer the presence of clouds and pose first constraints on their structure. Conclusions. Our study shows that the minimal R and S/N requirements for LIFE suffice to characterize the structure and composition of a Venus-like atmosphere above the cloud deck if an adequate model is chosen. Crucially, the cloud-free model is preferred by the retrieval for low spectral qualities. We thus find no direct evidence for clouds at the minimal R and S / N requirements and cannot infer the thickness of the atmosphere. Clouds are only constrainable in MIR retrievals of spectra with S / N ≥ 20. The model dependence of our retrieval results emphasizes the importance of developing a community-wide best-practice for atmospheric retrieval studies. 
    more » « less
  4. null (Ed.)
    In recent years, studies in engineering education have begun to intentionally integrate disability into discussions of diversity, inclusion, and equity. To broaden and advocate for the participation of this group in engineering, researchers have identified a variety of factors that have kept people with disabilities at the margins of the field. Such factors include the underrepresentation of disabled individuals within research and industry; systemic and personal barriers, and sociocultural expectations within and beyond engineering education-related contexts. These findings provide a foundational understanding of the external and environmental influences that can shape how students with disabilities experience higher education, develop a sense of belonging, and ultimately form professional identities as engineers. Prior work examining the intersections of disability identity and professional identity is limited, with little to no studies examining the ways in which students conceptualize, define, and interpret disability as a category of identity during their undergraduate engineering experience. This lack of research poses problems for recruitment, retention, and inclusion, particularly as existing studies have shown that the ways in which students perceive and define themselves in relation to their college major is crucial for the development of a professional engineering identity. Further, due to variation in defining ‘disability’ across national agencies (e.g., the National Institutes of Health, and the Department of Justice) and disability communities (with different models of disability), the term “disability” is broad and often misunderstood, frequently referring to a group of individuals with a wide range of conditions and experiences. Therefore, the purpose of this study is to gain deeper insights into the ways students define disability and disability identity within their own contexts as they develop professional identities. Specifically, we ask the following research question: How do students describe and conceptualize non-apparent disabilities? To answer this research question, we draw from emergent findings from an on-going grounded theory exploration of professional identity formation of undergraduate civil engineering students with disabilities. In this paper, we focus our discussion on the grounded theory analyses of 4 semi-structured interviews with participants who have disclosed a non-apparent disability. Study participants consist of students currently enrolled in undergraduate civil engineering programs, students who were initially enrolled in undergraduate civil engineering programs and transferred to another major, and students who have recently graduated from a civil engineering program within the past year. Sensitizing concepts emerged as findings from the initial grounded theory analysis to guide and initiate our inquiry: 1) the medical model of disability, 2) the social model of disability, and 3) personal experience. First, medical models of disability position physical, cognitive, and developmental difference as a “sickness” or “condition” that must be “treated”. From this perspective, disability is perceived as an impairment that must be accommodated so that individuals can obtain a dominantly-accepted sense of normality. An example of medical models within the education context include accommodations procedures in which students must obtain an official diagnosis in order to access tools necessary for academic success. Second, social models of disability position disability as a dynamic and fluid identity that consists of a variety of physical, cognitive, or developmental differences. Dissenting from assumptions of normality and the focus on individual bodily conditions (hallmarks of the medical model), the social model focuses on the political and social structures that inherently create or construct disability. An example of a social model within the education context includes the universal design of materials and tools that are accessible to all students within a given course. In these instances, students are not required to request accommodations and may, consequently, bypass medical diagnoses. Lastly, participants referred to their own life experiences as a way to define, describe, and consider disability. Fernando considers his stutter to be a disability because he is often interrupted, spoken over, or silenced when engaging with others. In turn, he is perceived as unintelligent and unfit to be a civil engineer by his peers. In contrast, David, who identifies as autistic, does not consider himself to be disabled. These experiences highlight the complex intersections of medical and social models of disability and their contextual influences as participants navigate their lives. While these sensitizing concepts are not meant to scope the research, they provide a useful lens for initiating research and provides markers on which a deeper, emergent analysis is expanded. Findings from this work will be used to further explore the professional identity formation of undergraduate civil engineering students with disabilities. These findings will provide engineering education researchers and practitioners with insights regarding the ways individuals with disabilities interpret their in- and out-of-classroom experiences and navigate their disability identities. For higher education, broadly, this work aims to reinforce the complex and diverse nature of disability experience and identity, particularly as it relates to accommodations and accessibility within the classroom, and expand the inclusiveness of our programs and institutions. 
    more » « less
  5. Navigating scientific challenges, persevering through difficulties, and coping with failure are considered hallmarks of a successful scientist. However, relatively few studies investigate how undergraduate science, technology, engineering, and mathematics (STEM) students develop these skills and dispositions or how instructors can facilitate this development in undergraduate STEM learning contexts. This is a critical gap, because the unique cultures and practices found in STEM classrooms are likely to influence how students approach challenges and deal with failures, both during their STEM education and in the years that follow. To guide research aimed at understanding how STEM students develop a challenge-engaging disposition and the ability to adaptively cope with failure, we generate a model representing hypotheses of how students might approach challenges and respond to failures in undergraduate STEM learning contexts. We draw from theory and studies investigating mindset, goal orientations, attributions, fear of failure, and coping to inform our model. We offer this model as a tool for the community to test, revise, elaborate, or refute. Finally, we urge researchers and educators to consider the development, implementation, and rigorous testing of interventions aimed at helping students develop a persevering and challenge-engaging disposition within STEM contexts. 
    more » « less