skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visualizing and Annotating Protein Sequences using A Deep Neural Network
It is critical for biological studies to annotate amino acid sequences and understand how proteins function. Protein function is important to medical research in the health industry (e.g., drug discovery). With the advancement of deep learning, accurate protein annotation models have been developed for alignment free protein annotation. In this paper, we develop a deep learning model with an attention mechanism that can predict Gene Ontology labels given a protein sequence input. We believe this model can produce accurate predictions as well as maintain good interpretability. We further show how the model can be interpreted by examining and visualizing the intermediate layer output in our deep neural network.  more » « less
Award ID(s):
1936791
PAR ID:
10291891
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Visualizing and Annotating Protein Sequences using A Deep Neural Network
Page Range / eLocation ID:
506 to 510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between species. These approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular context for meaningful prediction. To supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, most of these methods are tied to a network for a single species, and many species lack biological networks. Results In this work, we integrate sequence and network information across multiple species by computing IsoRank similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multispecies meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and consequently leads to significant improvements in function prediction performance compared to two network-based methods, a deep learning sequence-based method and the BLAST annotation method used in the Critial Assessment of Functional Annotation. We are able to demonstrate that our approach performs well even in cases where a species has no network information available: when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out organism with good performance. Availability and implementation The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The data, including sequences, PPI networks and GO annotations are available at https://string-db.org/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Mura, Cameron (Ed.)
    Machine learning (ML) is increasingly being used to guide biological discovery in biomedicine such as prioritizing promising small molecules in drug discovery. In those applications, ML models are used to predict the properties of biological systems, and researchers use these predictions to prioritize candidates as new biological hypotheses for downstream experimental validations. However, when applied to unseen situations, these models can be overconfident and produce a large number of false positives. One solution to address this issue is to quantify the model’s prediction uncertainty and provide a set of hypotheses with a controlled false discovery rate (FDR) pre-specified by researchers. We propose CPEC, an ML framework for FDR-controlled biological discovery. We demonstrate its effectiveness using enzyme function annotation as a case study, simulating the discovery process of identifying the functions of less-characterized enzymes. CPEC integrates a deep learning model with a statistical tool known as conformal prediction, providing accurate and FDR-controlled function predictions for a given protein enzyme. Conformal prediction provides rigorous statistical guarantees to the predictive model and ensures that the expected FDR will not exceed a user-specified level with high probability. Evaluation experiments show that CPEC achieves reliable FDR control, better or comparable prediction performance at a lower FDR than existing methods, and accurate predictions for enzymes under-represented in the training data. We expect CPEC to be a useful tool for biological discovery applications where a high yield rate in validation experiments is desired but the experimental budget is limited. 
    more » « less
  3. Abstract Machine learning has been increasingly used for protein engineering. However, because the general sequence contexts they capture are not specific to the protein being engineered, the accuracy of existing machine learning algorithms is rather limited. Here, we report ECNet (evolutionary context-integrated neural network), a deep-learning algorithm that exploits evolutionary contexts to predict functional fitness for protein engineering. This algorithm integrates local evolutionary context from homologous sequences that explicitly model residue-residue epistasis for the protein of interest with the global evolutionary context that encodes rich semantic and structural features from the enormous protein sequence universe. As such, it enables accurate mapping from sequence to function and provides generalization from low-order mutants to higher-order mutants. We show that ECNet predicts the sequence-function relationship more accurately as compared to existing machine learning algorithms by using ~50 deep mutational scanning and random mutagenesis datasets. Moreover, we used ECNet to guide the engineering of TEM-1 β-lactamase and identified variants with improved ampicillin resistance with high success rates. 
    more » « less
  4. Abstract As deep learning algorithms drive the progress in protein structure prediction, a lot remains to be studied at this merging superhighway of deep learning and protein structure prediction. Recent findings show that inter-residue distance prediction, a more granular version of the well-known contact prediction problem, is a key to predicting accurate models. However, deep learning methods that predict these distances are still in the early stages of their development. To advance these methods and develop other novel methods, a need exists for a small and representative dataset packaged for faster development and testing. In this work, we introduce protein distance net (PDNET), a framework that consists of one such representative dataset along with the scripts for training and testing deep learning methods. The framework also includes all the scripts that were used to curate the dataset, and generate the input features and distance maps. Deep learning models can also be trained and tested in a web browser using free platforms such as Google Colab. We discuss how PDNET can be used to predict contacts, distance intervals, and real-valued distances. 
    more » « less
  5. Abstract Deep learning techniques have significantly advanced the field of protein structure prediction. LOMETS3 (https://zhanglab.ccmb.med.umich.edu/LOMETS/) is a new generation meta-server approach to template-based protein structure prediction and function annotation, which integrates newly developed deep learning threading methods. For the first time, we have extended LOMETS3 to handle multi-domain proteins and to construct full-length models with gradient-based optimizations. Starting from a FASTA-formatted sequence, LOMETS3 performs four steps of domain boundary prediction, domain-level template identification, full-length template/model assembly and structure-based function prediction. The output of LOMETS3 contains (i) top-ranked templates from LOMETS3 and its component threading programs, (ii) up to 5 full-length structure models constructed by L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) optimization, (iii) the 10 closest Protein Data Bank (PDB) structures to the target, (iv) structure-based functional predictions, (v) domain partition and assembly results, and (vi) the domain-level threading results, including items (i)–(iii) for each identified domain. LOMETS3 was tested in large-scale benchmarks and the blind CASP14 (14th Critical Assessment of Structure Prediction) experiment, where the overall template recognition and function prediction accuracy is significantly beyond its predecessors and other state-of-the-art threading approaches, especially for hard targets without homologous templates in the PDB. Based on the improved developments, LOMETS3 should help significantly advance the capability of broader biomedical community for template-based protein structure and function modelling. 
    more » « less