skip to main content


Title: Lagrangian Reduced Order Modeling Using Finite Time Lyapunov Exponents
There are two main strategies for improving the projection-based reduced order model (ROM) accuracy—(i) improving the ROM, that is, adding new terms to the standard ROM; and (ii) improving the ROM basis, that is, constructing ROM bases that yield more accurate ROMs. In this paper, we use the latter. We propose two new Lagrangian inner products that we use together with Eulerian and Lagrangian data to construct two new Lagrangian ROMs, which we denote α-ROM and λ-ROM. We show that both Lagrangian ROMs are more accurate than the standard Eulerian ROMs, that is, ROMs that use standard Eulerian inner product and data to construct the ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction). In particular, the α-ROM can be orders of magnitude more accurate than the standard Eulerian ROMs. We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs’ accuracy is entirely due to the novel Lagrangian inner products used to build the Lagrangian ROM basis.  more » « less
Award ID(s):
2012253 1821145
NSF-PAR ID:
10248783
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Fluids
Volume:
5
Issue:
4
ISSN:
2311-5521
Page Range / eLocation ID:
189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Developing accurate, efficient, and robust closure models is essential in the construction of reduced order models (ROMs) for realistic nonlinear systems, which generally require drastic ROM mode truncations. We propose a deep residual neural network (ResNet) closure learning framework for ROMs of nonlinear systems. The novel ResNet-ROM framework consists of two steps: (i) In the first step, we use ROM projection to filter the given nonlinear system and construct a spatially filtered ROM. This filtered ROM is low-dimensional, but is not closed. (ii) In the second step, we use ResNet to close the filtered ROM, i.e., to model the interaction between the resolved and unresolved ROM modes. We emphasize that in the new ResNet-ROM framework, data is used only to complement classical physical modeling (i.e., only in the closure modeling component), not to completely replace it. We also note that the new ResNet-ROM is built on general ideas of spatial filtering and deep learning and is independent of (restrictive) phenomenological arguments, e.g., of eddy viscosity type. The numerical experiments for the 1D Burgers equation show that the ResNet-ROM is significantly more accurate than the standard projection ROM. The new ResNet-ROM is also more accurate and significantly more efficient than other modern ROM closure models. 
    more » « less
  2. null (Ed.)
    Reduced order models (ROMs) are computational models whose dimension is significantly lower than those obtained through classical numerical discretizations (e.g., finite element, finite difference, finite volume, or spectral methods). Thus, ROMs have been used to accelerate numerical simulations of many query problems, e.g., uncertainty quantification, control, and shape optimization. Projection-based ROMs have been particularly successful in the numerical simulation of fluid flows. In this brief survey, we summarize some recent ROM developments for the quasi-geostrophic equations (QGE) (also known as the barotropic vorticity equations), which are a simplified model for geophysical flows in which rotation plays a central role, such as wind-driven ocean circulation in mid-latitude ocean basins. Since the QGE represent a practical compromise between efficient numerical simulations of ocean flows and accurate representations of large scale ocean dynamics, these equations have often been used in the testing of new numerical methods for ocean flows. ROMs have also been tested on the QGE for various settings in order to understand their potential in efficient numerical simulations of ocean flows. In this paper, we survey the ROMs developed for the QGE in order to understand their potential in efficient numerical simulations of more complex ocean flows: We explain how classical numerical methods for the QGE are used to generate the ROM basis functions, we outline the main steps in the construction of projection-based ROMs (with a particular focus on the under-resolved regime, when the closure problem needs to be addressed), we illustrate the ROMs in the numerical simulation of the QGE for various settings, and we present several potential future research avenues in the ROM exploration of the QGE and more complex models of geophysical flows. 
    more » « less
  3. Computationally efficient modeling of gas turbine combustion is challenging due to the chaotic multi-scale physics and the complex non-linear interactions between acoustic, hydrodynamic, and chemical processes. A large-eddy simulation (LES) is conducted for the model combustor of Meier et al. (1) using an unstructured mesh finite volume method with turbulent combustion effects modeled using a flamelet-based method. The flow field is validated via comparison to averaged and unsteady high-frequency particle image velocimetry (PIV) fields. A high degree of correlation is noted with the experiment in terms of flow field snapshots and via modal analysis. The dynamics of the precessing vortex core (PVC) is quantitatively characterized using dynamic mode decomposition. The validated FOM dataset is used to construct projection-based ROMs, which aim to reduce the system dimension by projecting the state onto a reduced dimensional linear manifold. The use of a structure-preserving least squares formulation (SP-LSVT) guarantees stability of the ROM, compared to traditional model reduction techniques. The SP-LSVT ROM provides accurate reconstruction of the combustion dynamics within the training region, but faces a significant challenge in future state predictions. This limitation is mainly due to the increased projection error, which in turn is a direct consequence of the highly chaotic nature of the flow field, involving a wide range of disperse coherent structures. Formal projection-based ROMs have not been applied to a problem of this scale and complexity, and achieving accurate and efficient ROMs is a grand challenge problem. Further advances in non-linear manifold projections or adaptive basis projections have the potential to improve the predictive capability of this class of ROMs. 
    more » « less
  4. Low-dimensional and computationally less-expensive reduced-order models (ROMs) have been widely used to capture the dominant behaviors of high-4dimensional systems. An ROM can be obtained, using the well-known proper orthogonal decomposition (POD), by projecting the full-order model to a subspace spanned by modal basis modes that are learned from experimental, simulated, or observational data, i.e., training data. However, the optimal basis can change with the parameter settings. When an ROM, constructed using the POD basis obtained from training data, is applied to new parameter settings, the model often lacks robustness against the change of parameters in design, control, and other real-time operation problems. This paper proposes to use regression trees on Grassmann manifold to learn the mapping between parameters and POD bases that span the low-dimensional subspaces onto which full-order models are projected. Motivated by the observation that a subspace spanned by a POD basis can be viewed as a point in the Grassmann manifold, we propose to grow a tree by repeatedly splitting the tree node to maximize the Riemannian distance between the two subspaces spanned by the predicted POD bases on the left and right daughter nodes. Five numerical examples are presented to comprehensively demonstrate the performance of the proposed method, and compare the proposed tree-based method to the existing interpolation method for POD basis and the use of global POD basis. The results show that the proposed tree-based method is capable of establishing the mapping between parameters and POD bases, and thus adapt ROMs for new parameters.

     
    more » « less
  5. Abstract Data-driven reduced order models (ROMs) recently emerged as powerful tool for the solution of inverse scattering problems. The main drawback of this approach is that it was limited to measurement arrays with reciprocally collocated transmitters and receivers, that is, square symmetric matrix (data) transfer functions. To relax this limitation, we use our previous work Druskin et al (2021 Inverse Problems 37 075003), where the ROMs were combined with the Lippmann–Schwinger integral equation to produce a direct nonlinear inversion method. In this work we extend this approach to more general transfer functions, including those that are non-symmetric, e.g., obtained by adding only receivers or sources. The ROM is constructed based on the symmetric subset of the data and is used to construct all internal solutions. Remaining receivers are then used directly in the Lippmann–Schwinger equation. We demonstrate the new approach on a number of 1D and 2D examples with non-reciprocal arrays, including a single input/multiple outputs inverse problem, where the data is given by just a single-row matrix transfer function. This allows us to approach the flexibility of the Born approximation in terms of acceptable measurement arrays; at the same time significantly improving the quality of the inversion compared to the latter for strongly nonlinear scattering effects. 
    more » « less