skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Aegilops ventricosa 2NvS segment in bread wheat: cytology, genomics and breeding
Abstract Key message The first cytological characterization of the 2N v S segment in hexaploid wheat; complete de novo assembly and annotation of 2N v S segment; 2N v S frequency is increasing 2N v S and is associated with higher yield. Abstract The Aegilops ventricosa 2N v S translocation segment has been utilized in breeding disease-resistant wheat crops since the early 1990s. This segment is known to possess several important resistance genes against multiple wheat diseases including root knot nematode, stripe rust, leaf rust and stem rust. More recently, this segment has been associated with resistance to wheat blast, an emerging and devastating wheat disease in South America and Asia. To date, full characterization of the segment including its size, gene content and its association with grain yield is lacking. Here, we present a complete cytological and physical characterization of this agronomically important translocation in bread wheat. We de novo assembled the 2N v S segment in two wheat varieties, ‘Jagger’ and ‘CDC Stanley,’ and delineated the segment to be approximately 33 Mb. A total of 535 high-confidence genes were annotated within the 2N v S region, with > 10% belonging to the nucleotide-binding leucine-rich repeat (NLR) gene families. Identification of groups of NLR genes that are potentially N genome-specific and expressed in specific tissues can fast-track testing of candidate genes playing roles in various disease resistances. We also show the increasing frequency of 2N v S among spring and winter wheat breeding programs over two and a half decades, and the positive impact of 2N v S on wheat grain yield based on historical datasets. The significance of the 2N v S segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement.  more » « less
Award ID(s):
1822162
PAR ID:
10248784
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Theoretical and Applied Genetics
Volume:
134
Issue:
2
ISSN:
0040-5752
Page Range / eLocation ID:
529 to 542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The introgression of chromosome segments from wild relatives is an established strategy to enrich crop germplasm with disease-resistance genes 1 . Here we use mutagenesis and transcriptome sequencing to clone the leaf rust resistance gene Lr9 , which was introduced into bread wheat from the wild grass species Aegilops umbellulata 2 . We established that Lr9 encodes an unusual tandem kinase fusion protein. Long-read sequencing of a wheat Lr9 introgression line and the putative Ae. umbellulata Lr9 donor enabled us to assemble the ~28.4-Mb Lr9 translocation and to identify the translocation breakpoint. We likewise cloned Lr58 , which was reportedly introgressed from Aegilops triuncialis 3 , but has an identical coding sequence compared to Lr9 . Cytogenetic and haplotype analyses corroborate that the two genes originate from the same translocation event. Our work sheds light on the emerging role of kinase fusion proteins in wheat disease resistance, expanding the repertoire of disease-resistance genes for breeding. 
    more » « less
  2. Abstract The wheat wild relativeAegilops tauschiiwas previously used to transfer theLr42leaf rust resistance gene into bread wheat.Lr42confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date.Lr42has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes forLr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. TheLr42resistance allele is rare inAe. tauschiiand likely arose from ectopic recombination. Cloning ofLr42provides diagnostic markers and over 1000 CIMMYT wheat lines carryingLr42have been developed documenting its widespread use and impact in crop improvement. 
    more » « less
  3. Abstract Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes. 
    more » « less
  4. Abstract Introducing and characterizing variation through mutagenesis plus functional genomics can accelerate resistance breeding as well as our understanding of crop plant immunity. To reveal new germplasm resources for fungal disease resistance breeding in elite durum wheat, we challenged the diverse alleles in a sequenced and cataloged ethyl methanesulfonate mutagenized population of elite tetraploid wheatTriticum turgidumsubsp.durumcv ‘Kronos’ with stripe rust. We screened 2,000 mutant lines and identified sixteen enhanced disease resistance (EDR) lines with persistent resistance to stripe rust over four years of field testing. To find broad-spectrum resistance, we challenged these lines with other major biotrophic and necrotrophic pathogens, including those causing Septoria tritici blotch, tan spot, Fusarium head blight and leaf rust. Enhanced resistance to multiple fungi was found in 13 of 16 EDR lines. Five EDR lines showed spontaneous lesion formation in the absence of pathogens, providing new mutant resources to study plant stress response in the absence of the confounding effects of pathogen infection. We mapped exome capture sequencing data of the EDR lines to a recently released long-read Kronos genome to aid in the identification of causal mutations. We located an EDR resistance locus to an 175 Mb interval on chromosome 1B. Importantly, these phenotypically characterized EDR lines are newly described durum germplasm coupled with improved functional genomics resources that are readily available for both wheat fungal resistance breeding and basic plant immunity research. 
    more » « less
  5. Abstract Feeding the world's ever‐increasing population requires continuous development of high‐yielding and disease‐resistant cultivars of food crops such as wheat (Triticum aestivumL.). Speed breeding, which utilizes longer photoperiod times and higher temperatures, is a technique that accelerates plant development and is rapidly being adopted by wheat breeders across the globe to fast‐track cultivar development. Plant diseases are a major threat to crop production, and breeding for disease resistance is a major goal of crop breeders. Fusarium head blight (FHB), caused byFusarium graminearum, is a major disease of small grain cereals, affecting their yield and quality. The aim of present work was to assess if speed breeding conditions can be used to accelerate reliable assessment of FHB severity and mycotoxin deoxynivalenol (DON) accumulation in wheat varieties. We screened a set of six spring wheat genotypes with different levels of genetic resistance (two moderately susceptible, two highly susceptible, one moderately resistant, and one resistant) for their response to FHB at 14 days after inoculation (dai) and 21 dai and DON accumulation under normal versus speed breeding conditions. FHB severity and DON accumulation were found to be highly correlated at all time points under normal and speed breeding conditions. Robust differentiation between resistant and susceptible genotypes could be achieved at 14 dai rather than the normal period of 21 dai, saving at least a week in phenotyping. Combined with the accelerated growth, flowering, and maturity under these conditions, efficient FHB screening and DON evaluation under speed breeding conditions will fast‐track development of resistant wheat varieties. 
    more » « less