skip to main content


Title: IEEEVR2020: Exploring the First Steps Toward Standalone Virtual Conferences
The global COVID-19 pandemic forced all large in-person events to pivot to virtual or online platforms. IEEEVR2020 coincided with rising concerns and restrictions on travel and large gatherings, becoming one of the first academic conferences to rapidly adapt its programming to a completely virtual format. The global pandemic provided an impetus to re-examine the possibility of holding social interactions in virtual worlds. This article aims to: (1) revisit the issues of virtual conferences noted in earlier studies, focusing specifically on academic conferences, (2) introduce new survey and observational data from the recent IEEEVR2020 conference, and (3) present insights and future directions for virtual conferences during and after the COVID-19 pandemic. Findings from a field observation during the conference and a post-conference survey point to complex relationships among users, media platforms selected, and social constraints during the virtual conference.  more » « less
Award ID(s):
2032474
NSF-PAR ID:
10248799
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Virtual Reality
Volume:
2
ISSN:
2673-4192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In June 2020, at the annual conference of the American Society for Engineering Education (ASEE), which was held entirely online due to the impacts of COVID-19 (SARS-CoV-2), engineering education researchers and social justice scholars diagnosed the spread of two diseases in the United States: COVID-19 and racism. During a virtual workshop (T614A) titled, “Using Power, Privilege, and Intersectionality as Lenses to Understand our Experiences and Begin to Disrupt and Dismantle Oppressive Structures Within Academia,” Drs. Nadia Kellam, Vanessa Svihla, Donna Riley, Alice Pawley, Kelly Cross, Susannah Davis, and Jay Pembridge presented what we might call a pathological analysis of institutionalized racism and various other “isms.” In order to address the intersecting impacts of this double pandemic, they prescribed counter practices and protocols of anti-racism, and strategies against other oppressive “isms” in academia. At the beginning of the virtual workshop, the presenters were pleasantly surprised to see that they had around a hundred attendees. Did the online format of the ASEE conference afford broader exposure of the workshop? Did recent uprising of Black Lives Matter (BLM) protests across the country, and internationally, generate broader interest in their topic? Whatever the case, at a time when an in-person conference could not be convened without compromising public health safety, ASEE’s virtual conference platform, furnished by Pathable and supplemented by Zoom, made possible the broader social impacts of Dr. Svihla’s land acknowledgement of the unceded Indigenous lands from which she was presenting. Svihla attempted to go beyond a hollow gesture by including a hyperlink in her slides to a COVID-19 relief fund for the Navajo Nation, and encouraged attendees to make a donation as they copied and pasted the link in the Zoom Chat. Dr. Cross’s statement that you are either a racist or an anti-racist at this point also promised broader social impacts in the context of the virtual workshop. You could feel the intensity of the BLM social movements and the broader political climate in the tone of the presenters’ voices. The mobilizing masses on the streets resonated with a cutting-edge of social justice research and education at the ASEE virtual conference. COVID-19 has both exacerbated and made more obvious the unevenness and inequities in our educational practices, processes, and infrastructures. This paper is an extension of a broader collaborative research project that accounts for how an exceptional group of engineering educators have taken this opportunity to socially broaden their curricula to include not just public health matters, but also contemporary political and social movements. Engineering educators for change and advocates for social justice quickly recognized the affordances of diverse forms of digital technologies, and the possibilities of broadening their impact through educational practices and infrastructures of inclusion, openness, and accessibility. They are makers of what Gary Downy calls “scalable scholarship”—projects in support of marginalized epistemologies that can be scaled up from ideation to practice in ways that unsettle and displace the dominant epistemological paradigm of engineering education.[1] This paper is a work in progress. It marks the beginning of a much lengthier project that documents the key positionality of engineering educators for change, and how they are socially situated in places where they can connect social movements with industrial transitions, and participate in the production of “undone sciences” that address “a structured absence that emerges from relations of inequality.”[2] In this paper, we offer a brief glimpse into ethnographic data we collected virtually through interviews, participant observation, and digital archiving from March 2019 to August 2019, during the initial impacts of COVID-19 in the United States. The collaborative research that undergirds this paper is ongoing, and what is presented here is a rough and early articulation of ideas and research findings that have begun to emerge through our engagement with engineering educators for change. This paper begins by introducing an image concept that will guide our analysis of how, in this historical moment, forms of social and racial justice are finding their way into the practices of engineering educators through slight changes in pedagogical techniques in response the debilitating impacts of the pandemic. Conceptually, we are interested in how small and subtle changes in learning conditions can socially broaden the impact of engineering educators for change. After introducing the image concept that guides this work, we will briefly discuss methodology and offer background information about the project. Next, we discuss literature that revolves around the question, what is engineering education for? Finally, we introduce the notion of situating engineering education and give readers a brief glimpse into our ethnographic data. The conclusion will indicate future directions for writing, research, and intervention. 
    more » « less
  2. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-toface environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3Dprinted miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2- day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the ASEE Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less
  3. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3D-printed miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2-day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the American Society for Engineering Education (ASEE) Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less
  4. Abstract Background

    COVID‐19 has spurred a global crisis that has disrupted everyday lives and impacted the traditional methods, experiences, and abilities of higher education institutions' students, faculty, and staff, especially at Historically Black Colleges and Universities (HBCUs).

    Purpose/Hypothesis

    Given the pressing need demonstrated by the National Academies to advance the utilization of science, technology, engineering, and mathematics (STEM) education at HBCUs, this study aimed to explore the abrupt transition to remote teaching and learning at HBCUs guided by the following research question: How has COVID‐19 impacted the success and persistence of engineering students, faculty, and staff at HBCUs?

    Design/Methods

    Three surveys were developed, tested, piloted, and sent to HBCU stakeholders using a snowball sampling approach via email and social media outreach.

    Results

    Of the 171 student respondents (126 engineering majors), 79% agreed that not being able to access faculty in person affected their academic performance. Additionally, across all HBCU stakeholders' surveys, students had a statistically significant higher response when asked if the transition to virtual learning increased their overall levels of stress and anxiety.

    Conclusions

    During a global pandemic, HBCUs continue to provide a culture of support and inclusion for students, faculty, and staff in engineering. Increased stress levels experienced by students indicate that a safe and adequate transition back to campus is essential for their social and academic persistence. Due to the well‐documented inequities HBCUs faced before the pandemic, the impact of this unprecedented on their continued contributions toward broadening participation in engineering for students should be further explored.

     
    more » « less
  5. null (Ed.)
    CONTEXT With the onset of the COVID-19 pandemic, and the resulting response from universities, engineering students find themselves in an unprecedented situation. In addition to stressors related to the curriculum, residential students across the United States are being asked to relocate away from campus and engage in distance learning. At the same time, social distancing requirements are limiting students’ ability to socialize, procure food and supplies, exercise, and remain employed and financially solvent. Some students will fall ill while others face the prospect of sick family members, and even deaths in the family. Prior research suggests that individuals living through this pandemic are likely to face stress, uncertainty, and fear that affects their mental health and academic performance for years to come. PURPOSE OR GOAL The purpose of this study was to understand the ways in which the COVID-19 pandemic is affecting engineering students’ mental wellness, specifically stress, and how the effects differ for different groups of students. The research questions addressed are: 1) What effects has the pandemic had on baseline stress levels, and how do those vary by demographic group? 2) What effects has the pandemic had on quality of life, such as sleep habits and financial security, and how do those vary by demographic group? METHODS An online survey was conducted in the United States in May and June of 2020. More than 800 4-year engineering students who represented many engineering disciplines and universities responded. The survey used a modified version of the Holmes-Rahe Social Readjustment Rating Scale, which is a widely used and validated instrument to measure the effects of certain life events on stress. The data was analysed to determine the average increase in stress levels for students resulting from COVID-19, and which demographic groups have seen the most negative impact. We also report on which stress-inducing life-events were experienced most. OUTCOMES Latinx individuals and international students report statistically significantly higher levels of stress than the baseline population. Engineering students from other historically excluded identities, however,are not facing statistically significantly worse stress than their peers from historically over represented identities. Veterans fare better than the majority population on this metric.The data also indicates that different groups are more likely to experience different negative life-events because of COVID. CONCLUSIONS No previous research has examined the impacts of a global pandemic on engineering student stress and mental wellness. Our findings show that stress and mental wellness need to be understood intersectionally and that some underrepresented groups are disproportionately impacted by COVID-19. Understanding the impacts on students can help universities strategize and allocate limited resources most effectively to support student success. KEYWORDS Mental wellness; COVID-19; stress 
    more » « less