With the significant growth in the use of non-metallic composite materials, the demands for new and robust non-destructive testing methodologies is high. Microwave imaging has attracted a lot of attention recently for such applications. This is in addition to the biomedical imaging applications of microwave that are also being pursued actively. Among these efforts, in this paper, we propose a compact and cost-effective three-dimensional microwave imaging system based on a fast and robust holographic technique. For this purpose, we employ narrow-band microwave data, instead of wideband data used in previous three-dimensional cylindrical holographic imaging systems. Three-dimensional imaging is accomplished by using an array of receiver antennas surrounding the object and scanning that along with a transmitter antenna over a cylindrical aperture. To achieve low cost and compact size, we employ off-the-shelf components to build a data acquisition system replacing the costly and bulky vector network analyzers. The simulation and experimental results demonstrate the satisfactory performance of the proposed imaging system. We also show the effect of number of frequencies and size of the objects on the quality of reconstructed images.
more »
« less
Fast and Cost-Effective Three-Dimensional Microwave Imaging Using a Cylindrical Setup
In this paper, we propose a fast and low-cost cylindrical microwave imaging system based on the use of arrays of transmitter and receiver antennas and a customized low-cost data acquisition circuit using off-the-shelf components. The complex-valued scattered data captured with the proposed system is processed using near-field holographic image reconstruction. To enhance this technique, standardized minimum norm (SMN) approach is employed to solve the relevant systems of equations. The performance of the proposed imaging technique and the data acquisition system is demonstrated via simulations and experiments.
more »
« less
- Award ID(s):
- 1920098
- PAR ID:
- 10248800
- Date Published:
- Journal Name:
- Applied Computational Electromagnetics Society
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The use of non-metallic pipes and composite components that are low-cost, durable, light-weight, and resilient to corrosion is growing rapidly in various industrial sectors such as oil and gas industries in the form of non-metallic composite pipes. While these components are still prone to damages, traditional non-destructive testing (NDT) techniques such as eddy current technique and magnetic flux leakage technique cannot be utilized for inspection of these components. Microwave imaging can fill this gap as a favorable technique to perform inspection of non-metallic pipes. Holographic microwave imaging techniques are fast and robust and have been successfully employed in applications such as airport security screening and underground imaging. Here, we extend the use of holographic microwave imaging to inspection of multiple concentric pipes. To increase the speed of data acquisition, we utilize antenna arrays along the azimuthal direction in a cylindrical setup. A parametric study and demonstration of the performance of the proposed imaging system will be provided.more » « less
-
We propose a diffuser-based lensless underwater optical signal detection system. The system consists of a lensless one-dimensional (1D) camera array equipped with random phase modulators for signal acquisition and one-dimensional integral imaging convolutional neural network (1DInImCNN) for signal classification. During the acquisition process, the encoded signal transmitted by a light-emitting diode passes through a turbid medium as well as partial occlusion. The 1D diffuser-based lensless camera array is used to capture the transmitted information. The captured pseudorandom patterns are then classified through the 1DInImCNN to output the desired signal. We compared our proposed underwater lensless optical signal detection system with an equivalent lens-based underwater optical signal detection system in terms of detection performance and computational cost. The results show that the former outperforms the latter. Moreover, we use dimensionality reduction on the lensless pattern and study their theoretical computational costs and detection performance. The results show that the detection performance of lensless systems does not suffer appreciably. This makes lensless systems a great candidate for low-cost compressive underwater optical imaging and signal detection.more » « less
-
In current near-field holographic imaging, a circular region is scanned using an array of transmitting and receiving antennas over a narrow frequency band. This makes the data acquisition system slow, complex, bulky, and costly. Reducing the number of receiver antennas and using a narrower frequency band can significantly reduce the cost and complexity of the data acquisition system. To do so, we propose a method that uses prior knowledge about the object position, obtained by applying a neural network algorithm, called convolutional neural network (CNN), to the scattered field responses. This prior knowledge is then used to add a new regularization term to the cost function that is minimized in near-field holography.more » « less
-
Quantum ghost imaging (QGI) leverages correlations between entangled photon pairs to reconstruct an image using light that has never physically interacted with an object. Despite extensive research interest, this technique has long been hindered by slow acquisition speeds, due to the use of raster-scanned detectors or the slow response of intensified cameras. Here, we utilize a single-photon-sensitive time-stamping camera to perform QGI at ultra-low-light levels with rapid data acquisition and processing times, achieving high-resolution and high-contrast images in under 1 min. Our work addresses the trade-off between image quality, optical power, data acquisition time, and data processing time in QGI, paving the way for practical applications in biomedical and quantum-secured imaging.more » « less
An official website of the United States government

