The use of non-metallic pipes and composite components that are low-cost, durable, light-weight, and resilient to corrosion is growing rapidly in various industrial sectors such as oil and gas industries in the form of non-metallic composite pipes. While these components are still prone to damages, traditional non-destructive testing (NDT) techniques such as eddy current technique and magnetic flux leakage technique cannot be utilized for inspection of these components. Microwave imaging can fill this gap as a favorable technique to perform inspection of non-metallic pipes. Holographic microwave imaging techniques are fast and robust and have been successfully employed in applications such as airport security screening and underground imaging. Here, we extend the use of holographic microwave imaging to inspection of multiple concentric pipes. To increase the speed of data acquisition, we utilize antenna arrays along the azimuthal direction in a cylindrical setup. A parametric study and demonstration of the performance of the proposed imaging system will be provided.
more »
« less
A Low-Cost and Compact Three-Dimensional Microwave Holographic Imaging System
With the significant growth in the use of non-metallic composite materials, the demands for new and robust non-destructive testing methodologies is high. Microwave imaging has attracted a lot of attention recently for such applications. This is in addition to the biomedical imaging applications of microwave that are also being pursued actively. Among these efforts, in this paper, we propose a compact and cost-effective three-dimensional microwave imaging system based on a fast and robust holographic technique. For this purpose, we employ narrow-band microwave data, instead of wideband data used in previous three-dimensional cylindrical holographic imaging systems. Three-dimensional imaging is accomplished by using an array of receiver antennas surrounding the object and scanning that along with a transmitter antenna over a cylindrical aperture. To achieve low cost and compact size, we employ off-the-shelf components to build a data acquisition system replacing the costly and bulky vector network analyzers. The simulation and experimental results demonstrate the satisfactory performance of the proposed imaging system. We also show the effect of number of frequencies and size of the objects on the quality of reconstructed images.
more »
« less
- Award ID(s):
- 1920098
- PAR ID:
- 10157978
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 1036
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this paper, we propose a fast and low-cost cylindrical microwave imaging system based on the use of arrays of transmitter and receiver antennas and a customized low-cost data acquisition circuit using off-the-shelf components. The complex-valued scattered data captured with the proposed system is processed using near-field holographic image reconstruction. To enhance this technique, standardized minimum norm (SMN) approach is employed to solve the relevant systems of equations. The performance of the proposed imaging technique and the data acquisition system is demonstrated via simulations and experiments.more » « less
-
Microwave imaging has been a popular high resolution, non-invasive, and non-contact nondestructive testing (NDT) method for detecting defects and objects in non-metallic media with applications toward testing dielectric slabs, printed circuit board testing, biomedical diagnosis, etc. In this paper, we employ an array of microwave sensors designed based on the complementary split ring resonators (CSRR) along with nearfield holographic microwave imaging (NH-MWI) to assess the hidden features in the dielectric media. In this array, each element resonates at a different frequency in the range of 1 GHz to 10 GHz. Performance of the proposed method is demonstrated via simulation and experimental results.more » « less
-
A bstract A holographic duality was recently established between an $$ \mathcal{N} $$ N = 4 non-geometric AdS 4 solution of type IIB supergravity in the so-called S-fold class, and a three- dimensional conformal field theory (CFT) defined as a limit of $$ \mathcal{N} $$ N = 4 super-Yang-Mills at an interface. Using gauged supergravity, the $$ \mathcal{N} $$ N = 2 conformal manifold (CM) of this CFT has been assessed to be two-dimensional. Here, we holographically characterise the large- N operator spectrum of the marginally-deformed CFT. We do this by, firstly, providing the algebraic structure of the complete Kaluza-Klein (KK) spectrum on the associated two-parameter family of AdS4 solutions. And, secondly, by computing the $$ \mathcal{N} $$ N = 2 super-multiplet dimensions at the first few KK levels on a lattice in the CM, using new exceptional field theory techniques. Our KK analysis also allows us to establish that, at least at large N , this $$ \mathcal{N} $$ N = 2 CM is topologically a non-compact cylindrical Riemann surface bounded on only one side.more » « less
-
null (Ed.)Recently, non-metallic materials which are resilient- to-corrosion, low cost, and light weight have been exploited in many industrial sectors. A common application of them is in the form of pipes. Due to the fact that the traditional NDT methods are mostly effective for metallic pipes, here, a microwave holographic imaging combined with standardized minimum norm (SMN) is proposed for inspection of multiple concentric nonmetallic pipes. To reduce the complexity of the system, we aim at using the narrowest possible frequency band by using an array of receiver antennas. The validity of the proposed imaging method is demonstrated via simulation and experimental results.more » « less
An official website of the United States government

