skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lower jaw morphology of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar
The lower jaw of the holotype of Adalatherium hui, from the Late Cretaceous of Madagascar, is the most complete yet known for a gondwanatherian mammal. It reveals for the first time the morphology of the character-rich ascending ramus of the dentary in a gondwanatherian. Each half of the lower jaw is composed of only one bone, the dentary, which is short and deep and houses only five teeth: an enlarged, procumbent incisor and four postcanine teeth. In comparable parts of its anatomy, the dentary of Adalatherium is strikingly similar to that of Sudamerica but differs slightly from that of Galulatherium (conformation anterior to first postcanine, mental foramen position), the only two other gondwanatherians represented by complete horizontal rami. Among other Mesozoic mammaliaform taxa, the dentary of Adalatherium is most similar to those of the largely Laurasian group Multituberculata, most notably in absence of postdentary trough and Meckelian sulcus; presence of short, deep dentary with sizable diastema and articulating with squamosal via mediolaterally narrow condyle that continues onto posterior surface (i.e., no distinct peduncle); possession of much reduced dentition; absence of angular process; possession of large pterygoid fossa and pterygoid shelf, ventral surface of which is flat; absence of coronoid bone; and possession of unfused mandibular symphysis. Most of these features are clearly derived and stand in stark contrast to the much more plesiomorphic morphology exhibited by the lower jaw of the haramiyaviid Haramiyavia. The lower jaws of euharamiyidans, although derived in their own right, are also relatively plesiomorphic.  more » « less
Award ID(s):
1654949
PAR ID:
10248842
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of vertebrate paleontology
Volume:
40
Issue:
sup1
ISSN:
0272-4634
Page Range / eLocation ID:
81-96
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Actinopterygii is a major extant vertebrate group, but limited data are available for its earliest members. Here we investigate the morphology of Devonian actinopterygians, focusing on the lower jaw. We use X‐ray computed tomography (XCT) to provide comprehensive descriptions of the mandibles of 19 species, which span the whole of the Devonian and represent roughly two‐thirds of all taxa known from more than isolated or fragmentary material. Our findings corroborate previous reports in part but reveal considerable new anatomical data and represent the first detailed description for roughly half of these taxa. The mandibles display substantial variation in size, spanning more than an order of magnitude. Although most conform to a generalized pattern of a large dentary and one or two smaller infradentaries, XCT data reveal significant differences in the structure of the jaw and arrangement of teeth that may be of functional relevance. We report the presence of a rudimentary coronoid process in several taxa, contributed to by the dentary and/or infradentaries, as well a raised articular region, resulting in a mandible with an offset bite and that functions as a bent level arm. Among the most striking variation is that of tooth morphology: several taxa have heterodont dentary teeth that vary in size and orientation, and multiple variations on enlarged, whorl‐like and posteriorly‐oriented anterior coronoid dentition are observed. We use these new data to revise morphological characters that may be of phylogenetic significance and consider the possible functional implicationds of these traits. The observed variation in mandible form and structure suggests previously unappreciated functional diversity among otherwise morphologically homogenous Devonian ray‐finned fishes. 
    more » « less
  2. Abstract The Placerias /Downs’ Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3–4 anterior, a larger caniniform, and 1–3 “postcanine” alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus . This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa. 
    more » « less
  3. null (Ed.)
    The cranium of Adalatherium hui, as represented in the holotype and only specimen (UA 9030), is only the second known for any gondwanatherian mammal, the other being that of the sudamericid Vintana sertichi. Both Adalatherium and Vintana were recovered from the Upper Cretaceous (Maastrichtian) Maevarano Formation of northwestern Madagascar. UA 9030 is the most complete specimen of a gondwanatherian yet known and includes, in addition to the cranium, both lower jaws and a complete postcranial skeleton. Aside from Adalatherium and Vintana, gondwanatherians are otherwise represented only by isolated teeth and lower jaw fragments, belonging to eight monotypic genera from Late Cretaceous and Paleogene horizons of Madagascar, the Indian subcontinent, Africa, South America, and the Antarctic Peninsula. Although the anterior part of the cranium is very well preserved in UA 9030, the posterior part is not. Nonetheless, comparable parts of the crania of Adalatherium and Vintana indicate some level of common ancestry through possession of several synapomorphies, primarily related to the bony composition, articular relationships, and features of the snout region. Overprinted on this shared morphology are a host of autapomorphic features in each genus, some unique among mammaliaforms and some convergent upon therian mammals. The cranium of Adalatherium is compared with the crania of other mammaliamorphs, particularly those of allotherians or purported allotherians (i.e., haramiyidans, euharamiyidans, multituberculates, Cifelliodon, and Megaconus). Particular emphasis is placed on several recently described forms: the enigmatic Cifelliodon from the Early Cretaceous of Utah and several new taxa of euharamiyidans from the Late Jurassic of China. 
    more » « less
  4. Abstract Previous descriptive work on deciduous dentition of primates has focused disproportionately on great apes and humans. To address this bias in the literature, we studied 131 subadult nonhominoid specimens (including 110 newborns) describing deciduous tooth morphology and assessing maximum hydroxyapatite density (MHD). All specimens were CT scanned at 70 kVp and reconstructed at 20.5–39 μm voxels. Grayscale intensity from scans was converted to hydroxyapatite (HA) density (mg HA/cm3) using a linear conversion of grayscale values to calibration standards of known HA density (R2= .99). Using Amira software, mineralized dental tissues were captured by segmenting the tooth cusps first and then capturing the remainder of the teeth at descending thresholds of gray levels. We assessed the relationship of MHD of selected teeth to cranial length using Pearson correlation coefficients. In monkeys, anterior teeth are more mineralized than postcanine teeth. In tarsiers and most lemurs and lorises, postcanine teeth are the most highly mineralized. This suggests that monkeys have a more prolonged process of dental mineralization that begins with incisors and canines, while mineralization of postcanine teeth is delayed. This may in part be a result of relatively late weaning in most anthropoid primates. Results also reveal that in lemurs and lorises, MHD of the mandibular first permanent molar (M1) negatively correlates with cranial length. In contrast, the MHD of M1positively correlates with cranial length in monkeys. This supports the hypothesis that natural selection acts independently on dental growth as opposed to mineralization and indicates clear phylogenetic differences among primates. 
    more » « less
  5. Almost nothing is known about the diets of bathypelagic fishes, but functional morphology can provide useful tools to infer ecology. Here we quantify variation in jaw and tooth morphologies across anglerfishes (Lophiiformes), a clade spanning shallow and deep-sea habitats. Deep-sea ceratioid anglerfishes are considered dietary generalists due to the necessity of opportunistic feeding in the food-limited bathypelagic zone. We found unexpected diversity in the trophic morphologies of ceratioid anglerfishes. Ceratioid jaws span a functional continuum ranging from species with numerous stout teeth, a relatively slow but forceful bite, and high jaw protrusibility at one end (characteristics shared with benthic anglerfishes) to species with long fang-like teeth, a fast but weak bite and low jaw protrusibility at the other end (including a unique ‘wolftrap’ phenotype). Our finding of high morphological diversity seems to be at odds with ecological generality, reminiscent of Liem's paradox (morphological specialization allowing organisms to have broader niches). Another possible explanation is that diverse ceratioid functional morphologies may yield similar trophic success (many-to-one mapping of morphology to diet), allowing diversity to arise through neutral evolutionary processes. Our results highlight that there are many ways to be a successful predator in the deep sea. 
    more » « less