Herein, we report a Kumada cross-coupling reaction of benzylic sulfonamides. The scope of the transformation includes acyclic and cyclic sulfonamide precursors that cleanly produce highly substituted acyclic fragments. Preliminary data are consistent with a stereospecific mechanism that allows for a diastereoselective reaction.
more »
« less
Engaging Sulfonamides: Intramolecular Cross-Electrophile Coupling Reaction of Sulfonamides with Alkyl Chlorides
- Award ID(s):
- 1464980
- PAR ID:
- 10248880
- Date Published:
- Journal Name:
- The Journal of Organic Chemistry
- Volume:
- 85
- Issue:
- 4
- ISSN:
- 0022-3263
- Page Range / eLocation ID:
- 1775 to 1793
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Excited State Intramolecular Proton Transfer (ESIPT), originally discovered and explored in depth in a number of extensive photophysical studies, is more recently rediscovered as a powerful synthetic tool, offering rapid access to complex polyheterocycles. In our prior work we have employed ESIPT in aromatic o-keto amines and amides, leading to diverse primary photoproducts—complex quinolinols or azacanes possessing a fused lactam moiety—which could additionally be modified in short, high-yielding postphotochemical reactions to further grow complexity of the heterocyclic core scaffold and/or to decorate it with additional functional groups. Given that sulfonamides are generally known as privileged substructures, in this study we pursued two goals: (i) To explore whether sulfonamides could behave as proton donors in the context of ESIPT-initiated photoinduced reactions; (ii) To assess the scope of subsequent complexity-building photochemical and postphotochemical steps, which give access to polyheterocyclic molecular cores with fused cyclic sulfonamide moieties. In this work we show that this is indeed the case. Simple sulfonamide-containing photoprecursors produced the sought-after heterocyclic products in experimentally simple photochemical reactions accompanied by significant step-normalized complexity increases as corroborated by the Böttcher complexity scores.more » « less
-
null (Ed.)Sulfonamides feature prominently in organic synthesis, materials science and medicinal chemistry, where they play important roles as bioisosteric replacements of carboxylic acids and other carbonyls. Yet, a general synthetic platform for the direct conversion of carboxylic acids to a range of functionalized sulfonamides has remained elusive. Herein, we present a visible light-induced, dual catalytic platform that for the first time allows for a one-step access to sulfonamides and sulfonyl azides directly from carboxylic acids. The broad scope of the direct decarboxylative amidosulfonation (DDAS) platform is enabled by the efficient direct conversion of carboxylic acids to sulfinic acids that is catalyzed by acridine photocatalysts and interfaced with copper-catalyzed sulfur–nitrogen bond-forming cross-couplings with both electrophilic and nucleophilic reagents.more » « less
An official website of the United States government

