skip to main content

Title: Measuring the mixing scale of the ISM within nearby spiral galaxies
ABSTRACT The spatial distribution of metals reflects, and can be used to constrain, the processes of chemical enrichment and mixing. Using PHANGS-MUSE optical integral field spectroscopy, we measure the gas-phase oxygen abundances (metallicities) across 7138 H ii regions in a sample of eight nearby disc galaxies. In Paper I, we measure and report linear radial gradients in the metallicities of each galaxy, and qualitatively searched for azimuthal abundance variations. Here, we examine the 2D variation in abundances once the radial gradient is subtracted, Δ(O/H), in order to quantify the homogeneity of the metal distribution and to measure the mixing scale over which H ii region metallicities are correlated. We observe low (0.03–0.05 dex) scatter in Δ(O/H) globally in all galaxies, with significantly lower (0.02–0.03 dex) scatter on small (<600 pc) spatial scales. This is consistent with the measurement uncertainties, and implies the 2D metallicity distribution is highly correlated on scales of ≲600 pc. We compute the two-point correlation function for metals in the disc in order to quantify the scale lengths associated with the observed homogeneity. This mixing scale is observed to correlate better with the local gas velocity dispersion (of both cold and ionized gas) than with the star formation rate. Selecting only more » H ii regions with enhanced abundances relative to a linear radial gradient, we do not observe increased homogeneity on small scales. This suggests that the observed homogeneity is driven by the mixing introducing material from large scales rather than by pollution from recent and on-going star formation. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
193 to 209
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 ($t_{\rm lookback} \le 9.4 \, \rm {Gyr}$), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $1 \, \rm {kpc}$ of the disc mid-plane is vertically homogeneous to $\lesssim 0.008 \, \rm {dex}$ at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $\approx \! -0.01 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 1 ($t_{\rm lookback} = 7.8 \, \rm {Gyr}$) to $\approx \! -0.03 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $0.14 \, \rm {dex}$ at z = 1, reducing to $0.05 \, \rm {dex}$ at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 ($t_{\rm lookback} \gtrsim 6.9 \, \rm {Gyr}$). Furthermore, elemental abundancesmore »are measurably homogeneous (to ≲0.05 dex) across a radial range of $\Delta R \approx 3.5 \, \rm {kpc}$ at z ≳ 1 and $\Delta R \approx 1.7 \, \rm {kpc}$ at z = 0. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at z ≳ 1 that evolve to typically Gaussian distributions by z = 0. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW.« less

    The detailed age-chemical abundance relations of stars measure time-dependent chemical evolution. These trends offer strong empirical constraints on nucleosynthetic processes, as well as the homogeneity of star-forming gas. Characterizing chemical abundances of stars across the Milky Way over time has been made possible very recently, thanks to surveys like Gaia, APOGEE, and Kepler. Studies of the low-α disc have shown that individual elements have unique age–abundance trends and the intrinsic dispersion around these relations is small. In this study, we examine and compare the age distribution of stars across both the high and low-α disc and quantify the intrinsic dispersion of 16 elements around their age–abundance relations at [Fe/H] = 0 using APOGEE DR16. We examine the age–metallicity relation and visualize the temporal and spatial distribution of disc stars in small chemical cells. We find: (1) the high-α disc has shallower age–abundance relations compared to the low-α disc, but similar median intrinsic dispersions of ∼0.03 dex; (2) turnover points in the age-[Fe/H] relations across radius for both the high- and low-α disc. The former constrains the mechanisms that set similar intrinsic dispersions, regardless of differences in the enrichment history, for stars in both disc, and the latter indicates the presence of radialmore »migration in both disc. Our study is accompanied by an age catalogue for 64 317 stars in APOGEE derived using the cannon with a median uncertainty of 1.5 Gyr (26 per cent; APO-CAN stars), and a red clump catalogue of 22 031 stars with a contamination rate of 2.7 per cent.

    « less

    We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $\approx 7 \, \rm {Gyr}$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $\gtrsim 12 \, \rm {Gyr}$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $\lesssim 0.17 \, \rm {dex}$ at $t_{\rm lb} = 11.6 \, \rm {Gyr}$ to $\sim 0.04 \, \rm {dex}$ at present-day. Consequently, stars at $t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in amore »vertically homogeneous disc, Δ[Fe/H]$\le 0.02 \, \rm {dex}$ within $1 \, \rm {kpc}$ of the galactic mid-plane, with the exception of the young stars in the inner $\approx 4 \, \rm {kpc}$ at z ∼ 0. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disc evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses.

    « less
  4. ABSTRACT Deciphering the distribution of metals throughout galaxies is fundamental in our understanding of galaxy evolution. Nearby, low-metallicity, star-forming dwarf galaxies, in particular, can offer detailed insight into the metal-dependent processes that may have occurred within galaxies in the early Universe. Here, we present VLT/MUSE observations of one such system, JKB 18, a blue diffuse dwarf galaxy with a metallicity of only 12 + log(O/H)=7.6 ± 0.2 (∼0.08 Z⊙). Using high spatial resolution integral-field spectroscopy of the entire system, we calculate chemical abundances for individual H ii regions using the direct method and derive oxygen abundance maps using strong-line metallicity diagnostics. With large-scale dispersions in O/H, N/H, and N/O of ∼0.5–0.6 dex and regions harbouring chemical abundances outside this 1σ distribution, we deem JKB 18 to be chemically inhomogeneous. We explore this finding in the context of other chemically inhomogeneous dwarf galaxies and conclude that neither the accretion of metal-poor gas, short mixing time-scales or self-enrichment from Wolf–Rayet stars are accountable. Using a galaxy-scale, multiphase, hydrodynamical simulation of a low-mass dwarf galaxy, we find that chemical inhomogeneities of this level may be attributable to the removal of gas via supernovae and the specific timing of the observations with respect to star formation activity. This study not only draws attentionmore »to the fact that dwarf galaxies can be chemically inhomogeneous, but also that the methods used in the assessment of this characteristic can be subject to bias.« less
  5. ABSTRACT We present an analysis of spatially resolved gas-phase metallicity relations in five dwarf galaxies ($\rm \mathit{M}_{halo} \approx 10^{11}\, {\rm M}_\odot$, $\rm \mathit{M}_\star \approx 10^{8.8}{-}10^{9.6}\, {\rm M}_\odot$) from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, which include an explicit model for sub-grid turbulent mixing of metals in gas, near z ≈ 0, over a period of 1.4 Gyr, and compare our findings with observations. While these dwarf galaxies represent a diverse sample, we find that all simulated galaxies match the observed mass–metallicity (MZR) and mass–metallicity gradient (MZGR) relations. We note that in all five galaxies, the metallicities are effectively identical between phases of the interstellar medium (ISM), with 95 ${{\ \rm per\ cent}}$ of the gas being within ±0.1 dex between the cold and dense gas (T < 500 K and nH > 1 cm−3), ionized gas (near the H αT ≈ 104 K ridge-line), and nebular regions (ionized gas where the 10 Myr-averaged star formation rate is non-zero). We find that most of the scatter in relative metallicity between cold dense gas and ionized gas/nebular regions can be attributed to either local starburst events or metal-poor inflows. We also note the presence of a major merger in one of our galaxies,more »m11e, with a substantial impact on the metallicity distribution in the spatially resolved map, showing two strong metallicity peaks and triggering a starburst in the main galaxy.« less