skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast and accurate autofocus control using Gaussian standard deviation and gradient-based binning
We propose a fast and accurate autofocus algorithm using Gaussian standard deviation and gradient-based binning. Rather than iteratively searching for the optimal focus using an optimization process, the proposed algorithm directly calculates the mean of the Gaussian shaped focus measure (FM) curve to find the optimal focus location and uses the FM curve standard deviation to adapt the motion step size. The calculation only requires 3-4 defocused images to identify the center location of the FM curve. Furthermore, by assigning motion step sizes based on the FM curve standard deviation, the magnitude of the motion step is adaptively controlled according to the defocused measure, thus avoiding overshoot and unneeded image processing. Our experiment verified the proposed method is faster than the state-of-the-art Adaptive Hill-Climbing (AHC) and offers satisfactory accuracy as measured by root-mean-square error. The proposed method requires 80% fewer images for focusing compared to the AHC method. Moreover, due to this significant reduction in image processing, the proposed method reduces autofocus time to completion by 22% compared to the AHC method. Similar performance of the proposed method was observed in both well-lit and low-lighting conditions.  more » « less
Award ID(s):
1916866
PAR ID:
10248968
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
29
Issue:
13
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 19862
Size(s):
Article No. 19862
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital holographic microscopy (DHM) enables the three-dimensional (3D) reconstruction of quantitative phase distributions from a defocused hologram. Traditional computational algorithms follow a sequential approach in which one first reconstructs the complex amplitude distribution and later applies focusing algorithms to provide an in-focus phase map. In this work, we have developed a synergistic computational framework to compensate for the linear tilt introduced in off-axis DHM systems and autofocus the defocused holograms by minimizing a cost function, providing in-focus reconstructed phase images without phase distortions. The proposed computational tool has been validated in defocused holograms of human red blood cells and three-dimensional images of dynamic sperm cells. 
    more » « less
  2. Deep learning-based virtual staining was developed to introduce image contrast to label-free tissue sections, digitally matching the histological staining, which is time-consuming, labor-intensive, and destructive to tissue. Standard virtual staining requires high autofocusing precision during the whole slide imaging of label-free tissue, which consumes a significant portion of the total imaging time and can lead to tissue photodamage. Here, we introduce a fast virtual staining framework that can stain defocused autofluorescence images of unlabeled tissue, achieving equivalent performance to virtual staining of in-focus label-free images, also saving significant imaging time by lowering the microscope’s autofocusing precision. This framework incorporates a virtual autofocusing neural network to digitally refocus the defocused images and then transforms the refocused images into virtually stained images using a successive network. These cascaded networks form a collaborative inference scheme: the virtual staining model regularizes the virtual autofocusing network through a style loss during the training. To demonstrate the efficacy of this framework, we trained and blindly tested these networks using human lung tissue. Using 4× fewer focus points with 2× lower focusing precision, we successfully transformed the coarsely-focused autofluorescence images into high-quality virtually stained H&E images, matching the standard virtual staining framework that used finely-focused autofluorescence input images. Without sacrificing the staining quality, this framework decreases the total image acquisition time needed for virtual staining of a label-free whole-slide image (WSI) by ~32%, together with a ~89% decrease in the autofocusing time, and has the potential to eliminate the laborious and costly histochemical staining process in pathology. 
    more » « less
  3. Extracting depth information from photon-limited, defocused images is challenging because depth from defocus (DfD) relies on accurate estimation of defocus blur, which is fundamentally sensitive to image noise. We present a novel approach to robustly measure object depths from photon-limited images along the defocused boundaries. It is based on a new image patch representation, Blurry-Edges, that explicitly stores and visualizes a rich set of low-level patch information, including boundaries, color, and smoothness. We develop a deep neural network architecture that predicts the Blurry-Edges representation from a pair of differently defocused images, from which depth can be analytically calculated using a novel DfD relation we derive. Our experiment shows that our method achieves the highest depth estimation accuracy on photon-limited images compared to a broad range of state-of-the-art DfD methods. 
    more » « less
  4. We present a method that takes as input a single dual-pixel image, and simultaneously estimates the image's defocus map---the amount of defocus blur at each pixel---and recovers an all-in-focus image. Our method is inspired from recent works that leverage the dual-pixel sensors available in many consumer cameras to assist with autofocus, and use them for recovery of defocus maps or all-in-focus images. These prior works have solved the two recovery problems independently of each other, and often require large labeled datasets for supervised training. By contrast, we show that it is beneficial to treat these two closely-connected problems simultaneously. To this end, we set up an optimization problem that, by carefully modeling the optics of dual-pixel images, jointly solves both problems. We use data captured with a consumer smartphone camera to demonstrate that, after a one-time calibration step, our approach improves upon prior works for both defocus map estimation and blur removal, despite being entirely unsupervised. 
    more » « less
  5. The image processing task of the recovery of an image from a noisy or compromised image is an illposed inverse problem. To solve this problem, it is necessary to incorporate prior information about the smoothness, or the structure, of the solution, by incorporating regularization. Here, we consider linear blur operators with an efficiently-found singular value decomposition. Then, regularization is obtained by employing a truncated singular value expansion for image recovery. In this study, we focus on images for which the image blur operator is separable and can be represented by a Kronecker product such that the associated singular value decomposition is expressible in terms of the singular value decompositions of the separable components. The truncation index k can then be identified without forming the full Kronecker product of the two terms. This report investigates the problem of learning an optimal k using two methods. For one method to learn k we assume the knowledge of the true images, yielding a supervised learning algorithm based on the average relative error. The second method uses the method of generalized cross validation and does not require knowledge of the true images. The approach is implemented and demonstrated to be successful for Gaussian, Poisson and salt and pepper noise types across noise levels with signal to noise ratios as low as 10. This research contributes to the field by offering insights into the use of the supervised and unsupervised estimators for the truncation index, and demonstrates that the unsupervised algorithm is not only robust and computationally efficient, but is also comparable to the supervised method. 
    more » « less