skip to main content


Title: Albumin Conjugates of Thiosemicarbazone and Imidazole‐2‐thione Prochelators: Iron Coordination and Antiproliferative Activity
Abstract

The central role of iron in tumor progression and metastasis motivates the development of iron‐binding approaches in cancer chemotherapy. Disulfide‐based prochelators are reductively activated upon cellular uptake to liberate thiol chelators responsible for iron sequestration. Herein, a trimethyl thiosemicarbazone moiety and the imidazole‐2‐thione heterocycle are incorporated in this prochelator design. Iron binding of the corresponding tridentate chelators leads to the stabilization of a low‐spin ferric center in 2 : 1 ligand‐to‐metal complexes. Native mass spectrometry experiments show that the prochelators form stable disulfide conjugates with bovine serum albumin, thus affording novel bioconjugate prochelator systems. Antiproliferative activities at sub‐micromolar levels are recorded in a panel of breast, ovarian and colorectal cancer cells, along with significantly lower activity in normal fibroblasts.

 
more » « less
Award ID(s):
1920234
NSF-PAR ID:
10249047
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemMedChem
Volume:
16
Issue:
18
ISSN:
1860-7179
Page Range / eLocation ID:
p. 2764-2768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Single‐chain variable fragment (scFv) antibodies have great potential for a range of applications including as diagnostic and therapeutic agents. However, production of scFvs is challenging because proper folding and activity depend on the formation of two intrachain disulfide bonds that do not readily form in the cytoplasm of living cells. Functional expression in bacteria therefore involves targeting to the more oxidizing periplasm, but yields in this compartment can be limiting due to secretion bottlenecks and the relatively small volume compared to the cytoplasm. In the present study, we evaluated an anti‐HER2 scFv, which is specific for human epidermal growth receptor 2 (HER2) overexpressed in breast cancer, for functional expression in the cytoplasm ofEscherichia colistrains BL21(DE3) and SHuffle T7 Express, the latter of which is genetically engineered for cytoplasmic disulfide bond formation. Specifically, we observed much greater solubility and binding activity with SHuffle T7 Express cells, which likely resulted from the more oxidative cytoplasm in this strain background. We also found that SHuffle T7 Express cells were capable of supporting high‐level soluble production of anti‐HER2 scFvs with intact disulfide bonds independent of variable domain orientation, providing further evidence that SHuffle T7 Express is a promising host for laboratory and preparative expression of functional scFv antibodies.

     
    more » « less
  2. Abstract

    The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X-ray absorption near-edge structure spectroscopy (S-XANES) where S 6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms.

    One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, the energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel.

    The thermodynamics of incorporation of disulfide and bisulfide into apatite is evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S is also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS(aq)(2−n) and HnS(aq)(2−n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite, and decreases for hydroxylapatite, as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures.

     
    more » « less
  3. Abstract

    The development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide45Ti for radiopharmaceutical applications. Herein, we evaluate the Ti(IV)‐coordination chemistry of four catechol‐based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN‐CAM readily form mononuclear Ti(IV)species in aqueous solution at neutral pH. Radiolabeling studies reveal that Ent and TREN‐CAM form mononuclear complexes with the short‐lived, positron‐emitting radionuclide45Ti(IV), and do not transchelate to plasma proteins in vitro and exhibit rapid renal clearance in naïve mice. These features guide efforts to target the45Ti isotope to prostate cancer tissue through the design, synthesis, and evaluation of Ent‐DUPA, a small molecule conjugate composed of a prostate specific membrane antigen (PSMA) targeting peptide and a monofunctionalized Ent scaffold. The [45Ti][Ti(Ent‐DUPA)]2−complex forms readily at room temperature. In a tumor xenograft model in mice, selective tumor tissue accumulation (8±5 %,n=5), and low off‐target uptake in other organs is observed. Overall, this work demonstrates targeted imaging with45Ti(IV), provides a foundation for advancing the application of45Ti in nuclear medicine, and reveals that Ent can be repurposed as a45Ti‐complexing cargo for targeted nuclear imaging applications.

     
    more » « less
  4. Abstract

    The development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide45Ti for radiopharmaceutical applications. Herein, we evaluate the Ti(IV)‐coordination chemistry of four catechol‐based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN‐CAM readily form mononuclear Ti(IV)species in aqueous solution at neutral pH. Radiolabeling studies reveal that Ent and TREN‐CAM form mononuclear complexes with the short‐lived, positron‐emitting radionuclide45Ti(IV), and do not transchelate to plasma proteins in vitro and exhibit rapid renal clearance in naïve mice. These features guide efforts to target the45Ti isotope to prostate cancer tissue through the design, synthesis, and evaluation of Ent‐DUPA, a small molecule conjugate composed of a prostate specific membrane antigen (PSMA) targeting peptide and a monofunctionalized Ent scaffold. The [45Ti][Ti(Ent‐DUPA)]2−complex forms readily at room temperature. In a tumor xenograft model in mice, selective tumor tissue accumulation (8±5 %,n=5), and low off‐target uptake in other organs is observed. Overall, this work demonstrates targeted imaging with45Ti(IV), provides a foundation for advancing the application of45Ti in nuclear medicine, and reveals that Ent can be repurposed as a45Ti‐complexing cargo for targeted nuclear imaging applications.

     
    more » « less
  5. Abstract Importance

    The function of Sco is at the center of many studies. The disulfide bond reduction in CuAby Sco is investigated herein and the effect of metal ions on the ability to reduce and form a mixed disulfide intermediate are also probed.

     
    more » « less