Potassium (K) and calcium (Ca)K‐edge X‐ray adsorption near‐edge (XANES) spectroscopy were performed on thirty‐three chemical compounds and geological materials, including chemical reagents, organometallic compounds, silicates, carbonates and igneous rock reference materials. The results confirm that the fine structure of theK‐edges for specimens is unique and distinguishable. The results suggest that compositional and local atomic variations strongly regulate spectral characteristics. Acquired XANES spectra with the library of distinctive spectral features of model references approve the fingerprint identification of different phases of K and Ca involved in geological materials. Moreover, this reveals that typical compositional changes in geological samples could strongly affect spectral features. As an example, we quantitatively determined the silicate species of K and Ca in two igneous rock reference materials by linear combination fitting. The dominant hosts and molecular environments of K and Ca can be interpreted based on pre‐edge/post‐edge peak position, intensity, shifts and resonance features, thus improving the understanding of the (bio)geochemical cycling, partitioning and isotopic fractionation of K and Ca. The outcomes serve as a complementary database for a vast number of scientific contexts, including aspects of geological and environment sciences.
more »
« less
Database of ab initio L-edge X-ray absorption near edge structure
Abstract The L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.
more »
« less
- Award ID(s):
- 1640899
- PAR ID:
- 10249079
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Zinc K -edge X-ray absorption near-edge (XANES) spectroscopy was conducted on 40 zinc mineral samples and organic compounds. The K -edge position varied from 9660.5 to 9666.0 eV and a variety of distinctive peaks at higher post-edge energies were exhibited by the materials. Zinc is in the +2 oxidation state in all analyzed materials, thus the variations in edge position and post-edge features reflect changes in zinc coordination. For some minerals, multiple specimens from different localities as well as pure forms from chemical supply companies were examined. These specimens had nearly identical K -edge and post-edge peak positions with only minor variation in the intensity of the post-edge peaks. This suggests that typical compositional variations in natural materials do not strongly affect spectral characteristics. Organic zinc compounds also exhibited a range of edge positions and post-edge features; however, organic compounds with similar zinc coordination structures had nearly identical spectra. Zinc XANES spectral patterns will allow identification of unknown zinc-containing minerals and organic phases in future studies.more » « less
-
Abstract The EDGE-CALIFA survey provides spatially resolved optical integral-field unit and CO spectroscopy for 125 galaxies selected from the Calar Alto Legacy Integral Field Area Survey (CALIFA) Data Release 3 sample. The Extragalactic Database for Galaxy Evolution (EDGE) presents the spatially resolved products of the survey as pixel tables that reduce the oversampling in the original images and facilitate comparison of pixels from different images. By joining these pixel tables to lower-dimensional tables that provide radial profiles, integrated spectra, or global properties, it is possible to investigate the dependence of local conditions on large-scale properties. The database is freely accessible and has been utilized in several publications. We illustrate the use of this database and highlight the effects of CO upper limits on the inferred slopes of the local scaling relations between the stellar mass, star formation rate (SFR), and H2surface densities. We find that the correlation between H2and SFR surface density is the tightest among the three relations.more » « less
-
Modeling L-edge spectra at X-ray wavelengths requires consideration of spin–orbit splitting of the 2p orbitals. We introduce a low-cost tool to compute core-level spectra that combines a spin–orbit mean-field description of the Breit–Pauli Hamiltonian with nonrelativistic excited states computed using the semi-empirical density-functional theory configuration-interaction singles (DFT/CIS) method, within the state-interaction approach. Our version of DFT/CIS was introduced recently for K-edge spectra and includes a semi-empirical correction to the core orbital energies, significantly reducing ad hoc shifts that are typically required when time-dependent (TD-)DFT is applied to core-level excitations. In combination with the core/valence separation approximation and spin–orbit couplings, the DFT/CIS method affords semiquantitative L-edge spectra at CIS cost. Spin–orbit coupling has a qualitative effect on the spectra, as demonstrated for a variety of 3d transition metal systems and main-group compounds. The use of different active orbital spaces helps to facilitate spectral assignments. We find that spin–orbit splitting has a negligible effect on M-edge spectra for 3d transition metal species.more » « less
-
In functional materials, the local environment around active species that may contain just a few nearest-neighboring atomic shells often changes in response to external conditions. Strong disorder in the local environment poses a challenge to commonly used extended X-ray absorption fine structure (EXAFS) analysis. Furthermore, the dilute concentrations of absorbing atoms, small sample size and the constraints of the experimental setup often limit the utility of EXAFS for structural analysis. X-ray absorption near-edge structure (XANES) has been established as a good alternative method to provide local electronic and geometric information of materials. The pre-edge region in the XANES spectra of metal compounds is a useful but relatively under-utilized resource of information of the chemical composition and structural disorder in nano-materials. This study explores two examples of materials in which the transition metal environment is either relatively symmetric or strongly asymmetric. In the former case, EXAFS results agree with those obtained from the pre-edge XANES analysis, whereas in the latter case they are in a seeming contradiction. The two observations are reconciled by revisiting the limitations of EXAFS in the case of a strong, asymmetric bond length disorder, expected for mixed-valence oxides, and emphasize the utility of the pre-edge XANES analysis for detecting local heterogeneities in structural and compositional motifs.more » « less
An official website of the United States government
