skip to main content


Title: The EDGE-CALIFA Survey: An Extragalactic Database for Galaxy Evolution Studies
Abstract

The EDGE-CALIFA survey provides spatially resolved optical integral-field unit and CO spectroscopy for 125 galaxies selected from the Calar Alto Legacy Integral Field Area Survey (CALIFA) Data Release 3 sample. The Extragalactic Database for Galaxy Evolution (EDGE) presents the spatially resolved products of the survey as pixel tables that reduce the oversampling in the original images and facilitate comparison of pixels from different images. By joining these pixel tables to lower-dimensional tables that provide radial profiles, integrated spectra, or global properties, it is possible to investigate the dependence of local conditions on large-scale properties. The database is freely accessible and has been utilized in several publications. We illustrate the use of this database and highlight the effects of CO upper limits on the inferred slopes of the local scaling relations between the stellar mass, star formation rate (SFR), and H2surface densities. We find that the correlation between H2and SFR surface density is the tightest among the three relations.

 
more » « less
NSF-PAR ID:
10494535
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
271
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 35
Size(s):
["Article No. 35"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a12CO(J= 2−1) survey of 60 local galaxies using data from the Atacama Compact Array as part of the Extragalactic Database for Galaxy Evolution: the ACA EDGE survey. These galaxies all have integral field spectroscopy from the CALIFA survey. Compared to other local galaxy surveys, ACA EDGE is designed to mitigate selection effects based on CO brightness and morphological type. Of the 60 galaxies in ACA EDGE, 36 are on the star formation main sequence, 13 are on the red sequence, and 11 lie in the “green valley” transition between these sequences. We test how star formation quenching processes affect the star formation rate (SFR) per unit molecular gas mass, SFEmol= SFR/Mmol, and related quantities in galaxies with stellar masses 10 ≤ log[M/M] ≤ 11.5 covering the full range of morphological types. We observe a systematic decrease of the molecular-to-stellar mass fraction (Rmol) with a decreasing level of star formation activity, with green valley galaxies also having lower SFEmolthan galaxies on the main sequence. On average, we find that the spatially resolved SFEmolwithin the bulge region of green valley galaxies is lower than in the bulges of main-sequence galaxies if we adopt a constant CO-to-H2conversion factor,αCO. While efficiencies in main-sequence galaxies remain almost constant with galactocentric radius, in green valley galaxies, we note a systematic increase of SFEmol,Rmol, and specific SFR with increasing radius. As shown in previous studies, our results suggest that although gas depletion (or removal) seems to be the most important driver of the star formation quenching in galaxies transiting through the green valley, a reduction in star formation efficiency is also required during this stage.

     
    more » « less
  2. ABSTRACT

    We present an empirical relation between the cold gas surface density (Σgas) and the optical extinction (AV) in a sample of 103 galaxies from the Extragalactic Database for Galaxy Evolution (EDGE) survey. This survey provides CARMA interferometric CO observations for 126 galaxies included in the Calar Alto Legacy Integral Field Area (CALIFA) survey. The matched, spatially resolved nature of these data sets allows us to derive the Σgas–AV relation on global, radial, and kpc (spaxel) scales. We determine AV from the Balmer decrement (H α/H β). We find that the best fit for this relation is $\Sigma _{\rm gas}\,(\rm {M_\odot \,pc}^{-2}) \sim 26 \times {\rm \mathit{ A}_\mathit{ V}} \,(\rm mag)$, and that it does not depend on the spatial scale used for the fit. However, the scatter in the fits increases as we probe smaller spatial scales, reflecting the complex relative spatial distributions of stars, gas, and dust. We investigate the Σgas/AV ratio on radial and spaxel scales as a function of $\mathrm{EW(H\,\alpha)}$. We find that at larger values of $\mathrm{EW({H\,\alpha })}$ (i.e. actively star-forming regions) this ratio tends to converge to twice the value expected for a foreground dust screen geometry (∼30 $\mathrm{M_{\odot } \, pc^{-2} \, mag^{-1}}$). On radial scales, we do not find a significant relation between the Σgas/AV ratio and the ionized gas metallicity. We contrast our estimates of Σgas using AV with compilations in the literature of the gas fraction on global and radial scales as well as with well-known scaling relations such as the radial star formation law and the Σgas–Σ* relation. These tests show that optical extinction is a reliable proxy for estimating Σgas in the absence of direct sub/millimeter observations of the cold gas.

     
    more » « less
  3. ABSTRACT

    We study the scaling relations between gas-phase metallicity, stellar mass surface density (Σ*), star formation rate surface density (ΣSFR), and molecular gas surface density ($\Sigma _{{\rm H}_2}$) in local star-forming galaxies on scales of a kpc. We employ optical integral field spectroscopy from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, and ALMA data for a subset of MaNGA galaxies. We use partial correlation coefficients and Random Forest regression to determine the relative importance of local and global galactic properties in setting the gas-phase metallicity. We find that the local metallicity depends primarily on Σ* (the resolved mass–metallicity relation, rMZR), and has a secondary anticorrelation with ΣSFR (i.e. a spatially resolved version of the ‘Fundamental Metallicity Relation’, rFMR). We find that $\Sigma _{{\rm H}_2}$ is less important than ΣSFR in determining the local metallicity. This result indicates that gas accretion, resulting in local metallicity dilution and local boosting of star formation, is unlikely to be the primary origin of the rFMR. The local metallicity depends also on the global properties of galaxies. We find a strong dependence on the total stellar mass (M*) and a weaker (inverse) dependence on the total SFR. The global metallicity scaling relations, therefore, do not simply stem out of their resolved counterparts; global properties and processes, such as the global gravitational potential well, galaxy-scale winds and global redistribution/mixing of metals, likely contribute to the local metallicity, in addition to local production and retention.

     
    more » « less
  4. Abstract

    We measure empirical relationships between the local star formation rate (SFR) and properties of the star-forming molecular gas on 1.5 kpc scales across 80 nearby galaxies. These relationships, commonly referred to as “star formation laws,” aim at predicting the local SFR surface density from various combinations of molecular gas surface density, galactic orbital time, molecular cloud free fall time, and the interstellar medium dynamical equilibrium pressure. Leveraging a multiwavelength database built for the Physics at High Angular Resolution in Nearby Galaxies (PHANGS) survey, we measure these quantities consistently across all galaxies and quantify systematic uncertainties stemming from choices of SFR calibrations and the CO-to-H2conversion factors. The star formation laws we examine show 0.3–0.4 dex of intrinsic scatter, among which the molecular Kennicutt–Schmidt relation shows a ∼10% larger scatter than the other three. The slope of this relation rangesβ≈ 0.9–1.2, implying that the molecular gas depletion time remains roughly constant across the environments probed in our sample. The other relations have shallower slopes (β≈ 0.6–1.0), suggesting that the star formation efficiency per orbital time, the star formation efficiency per free fall time, and the pressure-to-SFR surface density ratio (i.e., the feedback yield) vary systematically with local molecular gas and SFR surface densities. Last but not least, the shapes of the star formation laws depend sensitively on methodological choices. Different choices of SFR calibrations can introduce systematic uncertainties of at least 10%–15% in the star formation law slopes and 0.15–0.25 dex in their normalization, while the CO-to-H2conversion factors can additionally produce uncertainties of 20%–25% for the slope and 0.10–0.20 dex for the normalization.

     
    more » « less
  5. Abstract

    Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby–Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30–2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 ≲λ≲ 5540 Å) on the 10 m Hobby–Eberly Telescope. The fiber filling factor within ±30″ of SN 2023ixf is 80% with a spatial resolution of 1″. Ther< 5.″5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (ΣSFR) show weak increasing trends in the radial distributions within ther< 5.″5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR withinr< 3″ areE(BV) = 0.06 ± 0.14, andΣSFR=105.44±0.66Myr1arcsec2.There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of theR23calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (∼Z). The archival deep images from the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in thezband at 22.778 ± 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u,g,r,i). The results suggest a massive progenitor of ≈22M.

     
    more » « less