Abstract ObjectivesThe goals of this study were to describe and interpret two new fossil assemblages of cercopithecin monkeys (n = 328), one from the Faro Daba beds (ca. 100,000 years) and the other one from the Chai Baro beds (>158,000 years old), in the Afar Rift of Ethiopia. Materials and MethodsWe describe the two assemblages and compare them to extant cercopithecin species and the smaller fossil assemblage from Asbole, Ethiopia (ca. 600 ka). We use a population‐based approach to the taxonomy given the unusually large number of specimens. Craniodental and postcranial anatomy are presented. Evidence of locomotor habitus is described and evaluated in a framework of hybridization and postcranial plasticity. ResultsWe attribute all cercopithecin specimens from both beds to cf.Chlorocebusand conclude that the Faro Daba and Chai Baro assemblages likely sample single species at each time horizon. Subtle differences between the two assemblages, mostly in postcranial morphology, are insufficient to justify separation at the species level. DiscussionThe large sample sizes and unique preservational aspects of these two assemblages open a new window into the recent evolution of guenons. Our data indicate that these fossil populations may be ancestral to the cercopithecins currently living in the Afar region of Ethiopia.
more »
« less
Improved histological fixation of gelatinous marine invertebrates
Abstract BackgroundGelatinous zooplankton can be difficult to preserve morphologically due to unique physical properties of their cellular and acellular components. The relatively large volume of mesoglea leads to distortion of the delicate morphology and poor sample integrity in specimens prepared with standard aldehyde or alcohol fixation techniques. Similar challenges have made it difficult to extend standard laboratory methods such as in situ hybridization to larger juvenile ctenophores, hampering studies of late development. ResultsWe have found that a household water repellant glass treatment product commonly used in laboratories, Rain-X®, alone or in combination with standard aldehyde fixatives, greatly improves morphological preservation of such delicate samples. We present detailed methods for preservation of ctenophores of diverse sizes compatible with long-term storage or detection and localization of target molecules such as with immunohistochemistry and in situ hybridization and show that this fixation might be broadly useful for preservation of other delicate marine specimens. ConclusionThis new method will enable superior preservation of morphology in gelatinous specimens for a variety of downstream goals. Extending this method may improve the morphological fidelity and durability of museum and laboratory specimens for other delicate sample types.
more »
« less
- PAR ID:
- 10249322
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Frontiers in Zoology
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1742-9994
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The choice of fixation method significantly impacts tissue morphology and visualization of gene expression and proteins after in situ hybridization chain reaction (HCR) or immunohistochemistry (IHC), respectively. In this study, we compared the effects of paraformaldehyde (PFA) and trichloroacetic acid (TCA) fixation techniques prior to HCR and IHC on chicken embryos. Our findings underscore the importance of optimizing fixation methods for accurate visualization and subsequent interpretation of HCR and IHC results, with implications for probe and antibody validation and tissue-specific protein localization studies. We found that TCA fixation resulted in larger and more circular nuclei and neural tubes compared to PFA fixation. Additionally, TCA fixation altered the subcellular fluorescence signal intensity of various proteins, including transcription factors, cytoskeletal proteins, and cadherins. Notably, TCA fixation revealed protein signals in tissues that may be inaccessible with PFA fixation. In contrast, TCA fixation proved ineffective for mRNA visualization. These results highlight the need for optimization of fixation protocols depending on the target and model system, emphasizing the importance of methodological considerations in biological analyses.more » « less
-
Behavioral measurements of fragile aquatic organisms require specialized in situ techniques.We developed an in situ brightfield camera set-up for use during SCUBA diving in aquatic ecosystems.The system uses brightfield illumination with collimated light and an underwater camera to highlight morphological details, body motion and interactions between organisms with high spatial (4K: 3840x2160 pixels) and temporal resolution (up to 120 fps).This technique is particularly useful for gelatinous organisms because of their large (centimeters in length), transparent bodies.Further, the measurements are not subject to experimental artifacts produced in laboratory studies.This method is useful for anyone seeking detailed brightfield images of organisms or nonliving material (e.g. marine snow) in the natural environment.more » « less
-
Our perception of deep-sea communities has evolved as various sampling approaches have captured different components of deep-sea habitats. We sampled midwater zooplankton assemblages in Monterey Bay, California to quantify community composition (abundance and biomass) and biodiversity (at the Order level) across three depth ranges, and the effects of sampling methodology on community parameters. We collected zooplankton using two types of opening-closing trawls [Tucker Trawl and Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS)] and video recordings from a remotely operated vehicle (ROV). We quantified the relative contributions of microbes to community biomass using synoptic water-bottle casts and flow cytometry. Overall, the pelagic community was most similar between the Tucker trawl and ROV (dissimilarity = 52.4%) and least similar between the MOCNESS and ROV (dissimilarity = 65.8%). Dissimilarity between sampling methods was driven by the relative abundances of crustaceans and gelatinous taxa, where gelatinous animals (cnidarians, ctenophores, tunicates) were more abundant in ROV surveys (64.2%) and Tucker trawls (46.8%) compared to MOCNESS samples (14.5%). ROV surveys were the only method that sufficiently documented the most physically delicate taxa (e.g., physonect siphonophores, lobate ctenophores, and larvaceans). Biomass was also one order of magnitude lower in MOCNESS trawls compared to Tucker trawls. Due to these large differences, the relative contributions of microbes to total biomass were substantially lower in Tucker trawl samples (mean = 7.5%) compared to MOCNESS samples (mean = 51%). These results illustrate that our view of planktonic composition and community biomass is strongly dependent on sampling methodology.more » « less
-
Synopsis The increased use of imaging technology in biological research has drastically altered morphological studies in recent decades and allowed for the preservation of important collection specimens alongside detailed visualization of bony and soft-tissue structures. Despite the benefits associated with these newer imaging techniques, there remains a need for more “traditional” methods of morphological examination in many comparative studies. In this paper, we describe the costs and benefits of the various methods of visualizing, examining, and comparing morphological structures. There are significant differences not only in the costs associated with these different methods (monetary, time, equipment, and software), but also in the degree to which specimens are destroyed. We argue not for any one particular method over another in morphological studies, but instead suggest a combination of methods is useful not only for breadth of visualization, but also for the financial and time constraints often imposed on early-career research scientists.more » « less
An official website of the United States government
