skip to main content


Title: Isolating non-subduction-driven tectonic processes in Cascadia
Abstract Several tectonic processes combine to produce the crustal deformation observed across the Cascadia margin: (1) Cascadia subduction, (2) the northward propagation of the Mendocino Triple Junction (MTJ), (3) the translation of the Sierra Nevada–Great Valley (SNGV) block along the Eastern California Shear Zone–Walker Lane and, (3) extension in the northwestern Basin and Range, east of the Cascade Arc. The superposition of deformation associated with these processes produces the present-day GPS velocity field. North of ~ 45° N observed crustal displacements are consistent with inter-seismic subduction coupling. South of ~ 45° N, NNW-directed crustal shortening produced by the Mendocino crustal conveyor (MCC) and deformation associated with SNGV-block motion overprint the NE-directed Cascadia subduction coupling signal. Embedded in this overall pattern of crustal deformation is the rigid translation of the Klamath terrane, bounded on its north and west by localized zones of deformation. Since the MCC and SNGV processes migrate northward, their impact on the crustal deformation in southern Cascadia is a relatively recent phenomenon, since ~ 2 –3 Ma.  more » « less
Award ID(s):
1757581
NSF-PAR ID:
10249388
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geoscience Letters
Volume:
8
Issue:
1
ISSN:
2196-4092
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The southern Cascadia forearc undergoes a three-stage tectonic evolution, each stage involving different combinations of tectonic drivers, that produce differences in the upper-plate deformation style. These drivers include subduction, the northward migration of the Mendocino triple junction and associated thickening and thinning related to the Mendocino Crustal Conveyor (MCC) effect, and the NNW translation of the Sierra Nevada-Great Valley (SNGV) block. We combine geodetic data, plate reconstructions, seismic tomography and topographic observations to determine how the southern Cascadia upper plate is deforming in response to the combined effects of subduction and NNW-directed (MCC- and SNGV-related) tectonic processes. The location of the terrane boundaries between the relatively weak Franciscan complex and the stronger Klamath Mountain province (KMP) and SNGV block has been a key control on the style of upper-plate deformation in the southern Cascadia forearc since the mid-Miocene. At ∼15 Ma, present-day southern Cascadia was in central Cascadia and deformation there was principally controlled by subduction processes. Since ∼5 Ma, this region of the Cascadia upper plate, where the KMP lies inboard of the Franciscan complex, has been deforming in response to both subduction and MCC- and SNGV-related effects. GPS data show that the KMP is currently moving to the NNW at ∼8–12 mm/yr with little internal deformation, largely in response to the northward push of the SNGV block at its southern boundary. In contrast, the Franciscan complex is accommodating high NNW-directed and NE-directed shortening strain produced by MCC-related shortening and subduction coupling respectively. This composite tectonic regime can explain the style of faulting within and west of the KMP. Associated with this Mendocino Crustal Conveyor crustal thickening, seismic tomography imagery shows a region of low velocity material that we interpret to represent crustal flow and injection of Franciscan crust into the KMP at intracrustal levels. We suggest that this MCC-related crustal flow and injection of material into the KMP is a relatively young feature (post ∼5 Ma) and is driving a rejuvenated period of rock uplift within the KMP. This scenario provides a potential explanation for steep channels and high relief, suggestive of rapid erosion rates within the interior of the KMP. 
    more » « less
  2. Abstract

    The number of subduction zones that facilitated the northward translation of the Anatolide‐Tauride continental terrane derived from Gondwana to the southern margin of Eurasia at the longitude of western Turkey is debated. We hypothesized that if two north dipping subduction zones facilitated incipient collision in western Turkey, a late Cretaceous arc would have formed within the Neotethys and along the southern margin of Eurasia. To determine if an island arc formed within the Neotethys we investigated the sedimentary record of the Central Sakarya basin, which was deposited along the southern margin of Eurasia from 85 to 45 million years ago. Detrital zircon deposited within the lower levels of the Central Sakarya basin (the Değirmenözü Formation) are associated with south to north‐directed paleocurrents and exhibit a unimodal late Cretaceous age peak sourced from isotopically juvenile mantle melts. Zircon maximum depositional ages from the Değirmenözü Formation cluster between 95 and 90 Ma and are 5–10 Myr older than biostratigraphic depositional ages. Between 95 and 80 Ma, a 12‐unit shift from mantle to crustal derived εHf values occurs in the overlying Yenipazar Formation. We explain the absence of Paleozoic, Eurasian‐sourced detrital zircon, the rapid shift from mantle to crustal derived εHf values, and lag time in terms of passive margin subduction within an isolated intra‐oceanic subduction zone, whose island arc was reworked from south to north into the Central Sakarya basin during incipient collision. Thus, widely outcropping late Cretaceous plutonic rocks within Eurasia must have belonged to an additional convergent margin.

     
    more » « less
  3. Abstract Tectonic and seismogenic variations in subduction forearcs can be linked through various processes associated with subduction. Along the Cascadia forearc, significant variations between different geologic expressions of subduction appear to correlate, such as episodic tremor-and-slip (ETS) recurrence interval, intraslab seismicity, slab dip, uplift and exhumation rates, and topography, which allows for the systematic study of the plausible controlling mechanisms behind these variations. Even though the southern Cascadia forearc has the broadest topographic expression and shortest ETS recurrence intervals along the margin, it has been relatively underinstrumented with modern seismic equipment. Therefore, better seismic images are needed before robust comparisons with other portions of the forearc can be made. In March 2020, we deployed the Southern Cascadia Earthquake and Tectonics Array throughout the southern Cascadia forearc. This array consisted of 60 continuously recording three-component nodal seismometers with an average station spacing of ∼15 km, and stations recorded ∼38 days of data on average. We will analyze this newly collected nodal dataset to better image the structural characteristics and constrain the seismogenic behavior of the southern Cascadia forearc. The main goals of this project are to (1) constrain the precise location of the plate interface through seismic imaging and the analysis of seismicity, (2) characterize the lower crustal architecture of the overriding forearc crust to understand the role that this plays in enabling the high nonvolcanic tremor density and short episodic slow-slip recurrence intervals in the region, and (3) attempt to decouple the contributions of subduction versus San Andreas–related deformation to uplift along this particularly elevated portion of the Cascadia forearc. The results of this project will shed light on the controlling mechanisms behind heterogeneous ETS behavior and variable forearc surficial responses to subduction in Cascadia, with implications for other analogous subduction margins. 
    more » « less
  4. Abstract

    We utilize 3‐D finite element geodynamic models, incorporating long‐term kinematic estimates of upper plate motion, to better understand the roles that viscosity structure and mantle tractions play in generating plate motions and continental interior deformation in Alaska. Surface deformation in the Pacific‐North American plate boundary zone in Alaska and northwest Canada is strongly influenced by the complex interactions between flat‐slab subduction, gravitational collapse and mantle tractions. Predictions of long‐term tectonic block motion derived from recent Global Positioning System datasets (GPS) reveal surface motions atypical of other continental convergent plate boundary zones. Specifically, in northern and northwestern Alaska, southeastward motion is observed directed back toward the plate boundary. Geodynamic models that incorporate a southeastward directed long‐wavelength mantle traction of ∼2.5–3.8 MPa best replicate surface velocities in Alaska. These mantle tractions, in conjunction with the collision of the Yakutat microplate, appear to drive the uplift and deformation in the Mackenzie Mountains. Furthermore, the extent of the northward motion in southern and central Alaska is controlled by the location of the leading edge of the Yakutat flat slab.

     
    more » « less
  5. The Beishan orogen is part of the Neoproterozoic to early Mesozoic Central Asian Orogenic System in central Asia that exposes ophiolitic complexes, passive-margin strata, arc assemblages, and Precambrian basement rocks. To better constrain the tectonic evolution of the Beishan orogen, we conducted field mapping, U-Pb zircon dating, whole-rock geochemical analysis, and Sr-Nd isotopic analysis. The new results, when interpreted in the context of the known geological setting, show that the Beishan region had experienced five phases of arc magmatism at ca. 1450−1395 Ma, ca. 1071−867 Ma, ca. 542−395 Ma, ca. 468−212 Ma, and ca. 307−212 Ma. In order to explain the geological, geochemical, and geochronological data from the Beishan region, we present a tectonic model that involves the following five phases of deformation: (1) Proterozoic rifting that separated the North Beishan block from the Greater North China craton that led to the opening of the Beishan Ocean, (2) early Paleozoic north-dipping subduction (ca. 530−430 Ma) of the Beishan oceanic plate associated with back-arc extension followed by collision between the North and South Beishan microcontinental blocks, (3) northward slab rollback of the south-dipping subducting Paleo-Asian oceanic plate at ca. 450−440 Ma along the northern margin of the North Beishan block that led to the formation of a northward-younging extensional continental arc (ca. 470−280 Ma) associated with bimodal igneous activity, which indicates that the westward extension of the Solonker suture is located north of the Hongshishan-Pengboshan tectonic zone, (4) Late Carboniferous opening and Permian north-dipping subduction of the Liuyuan Ocean in the southern Beishan orogen, and (5) Mesozoic-Cenozoic intracontinental deformation induced by the final closure of the Paleo-Asian Ocean system in the north and the Tethyan Ocean system in the south. 
    more » « less