skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the Effect of Mantle Flow and Viscosity Structure on Surface Velocities in Alaska Using 3‐D Geodynamic Models
Abstract We utilize 3‐D finite element geodynamic models, incorporating long‐term kinematic estimates of upper plate motion, to better understand the roles that viscosity structure and mantle tractions play in generating plate motions and continental interior deformation in Alaska. Surface deformation in the Pacific‐North American plate boundary zone in Alaska and northwest Canada is strongly influenced by the complex interactions between flat‐slab subduction, gravitational collapse and mantle tractions. Predictions of long‐term tectonic block motion derived from recent Global Positioning System datasets (GPS) reveal surface motions atypical of other continental convergent plate boundary zones. Specifically, in northern and northwestern Alaska, southeastward motion is observed directed back toward the plate boundary. Geodynamic models that incorporate a southeastward directed long‐wavelength mantle traction of ∼2.5–3.8 MPa best replicate surface velocities in Alaska. These mantle tractions, in conjunction with the collision of the Yakutat microplate, appear to drive the uplift and deformation in the Mackenzie Mountains. Furthermore, the extent of the northward motion in southern and central Alaska is controlled by the location of the leading edge of the Yakutat flat slab.  more » « less
Award ID(s):
1736153
PAR ID:
10377898
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
10
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shear wave splitting is often assumed to be caused by mantle flow or preexisting lithospheric fabrics. We present 2,389 new SKS shear wave splitting observations from 384 broadband stations deployed in Alaska from January 2010 to August 2017. In Alaska, splitting appears to be controlled by the absolute plate motion (APM) of the North American and Pacific plates, the interaction between the two plates, and the geometry of the subducting Pacific‐Yakutat plate. Outside of the subduction zone's influence, the fast directions in northern Alaska parallel the North American APM direction. Fast directions near the Queen Charlotte‐Fairweather transform margin are parallel to the faults and are likely caused by the strike‐slip deformation extending throughout the lithosphere. In the mantle wedge, fast directions are oriented along the strike of the slab with large splitting times and are caused by along‐strike flow in the mantle wedge as the slab provides a barrier to flow. South of the Alaska Peninsula, the fast directions are parallel to the trench regardless of sea floor fabric, indicating along strike flow under the Pacific plate. Under the Kenai Peninsula, the complex flat slab geometry may cause subslab flow to be parallel to Pacific APM direction or to the North America‐Pacific relative motion. 
    more » « less
  2. Abstract The crustal stress field determines continental deformation, including intraplate seismicity and topographic undulations. However, the sources of observed crustal stress patterns remain debated, with proposed mechanisms including lateral variations in gravitational potential energy and mantle flow, the latter of which comprises plate boundary interactions and basal tractions. Here, we present a series of geodynamic models that simultaneously consider lithospheric and mantle dynamics in the same physical framework, based on which we investigate the sources of crustal stress over the conterminous U.S. The data‐oriented nature of these models allows us to systematically explore the relative contributions of different dynamic sources to the three‐dimensional crustal stress field. These models reveal that forces from the plate boundaries play a dominant role in generating the directional pattern of long‐wavelength horizontal crustal stress across the conterminous U.S. In the central U.S., especially regions of high‐topography, lithospheric density heterogeneities locally modify the crustal stress field. Similarly, mantle flow beneath the North American plate modulates crustal stress orientation in the eastern U.S., particularly in regions with thin lithosphere. Furthermore, we find that a denser‐than‐ambient lithospheric mantle beneath the central and eastern U.S. is required to match the observed continental‐scale E‐W topographic contrast. 
    more » « less
  3. Abstract Simulating present‐day solid Earth deformation and volatile cycling requires integrating diverse geophysical data sets and advanced numerical techniques to model complex multiphysics processes at high resolutions. Subduction zone modeling is particularly challenging due to the large geographic extent, localized deformation zones, and the strong feedbacks between reactive fluid transport and solid deformation. Here, we develop new workflows for simulating 3‐dimensional thermal‐mechanical subduction and patterns of volatile dehydration at convergent margins, adaptable to include reactive fluid transport. We apply these workflows to the Hikurangi margin, where recent geophysical investigations have offered unprecedented insight into the structure and processes coupling fluid transport and solid deformation across broad spatiotemporal scales. Geophysical data sets constraining the downgoing and overriding plate structure are collated with the Geodynamic World Builder, which provides the initial conditions for forward simulations using the open‐source geodynamic modeling software code ASPECT. We systematically examine how plate interface rheology and hydration of the downgoing plate and upper mantle influence Pacific–Australian convergence and seismic anisotropy. Models prescribing a plate boundary viscosity of Pa s best reproduce observed plate velocities, and changing the configuration of the Pacific–Australia plate boundary directly influences the modeled plate motions. Models considering hydrated olivine fabrics best reproduce observations of seismic anisotropy. Predicted patterns of slab dehydration and mantle melting correlate well with observations of seismic attenuation and arc volcanism. These results suggest that hydration‐related rheological heterogeneity and related fluid weakening may strongly influence slab dynamics. Future investigations integrating coupled fluid transport and global mantle flow will provide insight into the feedbacks between subduction dynamics, fluid pathways, and arc volcanism. 
    more » « less
  4. Abstract The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska and then northwestward from ca. 6 Ma to present in the western Wrangell Mountains. The 13 Ma to present spatial-temporal evolution is consistent with dextral translation along intra-arc, strike-slip faults and previously documented changes in plate boundary conditions, which include an increase in plate convergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to shallow subduction-related flux melting and slab edge melting that is driven by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. Magmatism was persistently focused within or adjacent to a remnant suture zone, which indicates that upper plate crustal heterogeneities influenced arc magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ and DARL age populations that reflect earlier episodes of magmatism within underlying accreted terranes and match magmatic flare-ups documented along the Cordilleran margin. 
    more » « less
  5. During plate convergence, shallow subduction or underthrusting of the lower-plate lithosphere beneath an overriding plate often results in far-field intraplate deformation, as observed in the Late Cretaceous–Paleogene North American Laramide or Cenozoic Himalayan-Tibetan orogen. Perplexingly, during this shallow-slab process, wide expanses of crust between the plate boundary and intraplate orogen do not experience significant synchronous deformation. These apparently undeformed crustal regions may reflect (1) a strong, rigid plate, (2) increased gravitational potential energy (GPE) to resist shortening and uplift, or (3) decoupling of the upper-plate lithosphere from any basal tractions. Here we review the geology of three orogens that formed due to flat slab subduction or underthrusting: the Himalayan-Tibetan, Mesozoic southeast China, and Laramide orogens. These orogens all involved intraplate deformation >1000-km from the plate boundary, large regions of negligible crustal shortening between the plate-boundary and intra-plate thrust belts, hot crustal conditions within the hinterland regions, and extensive upper-plate porphyry copper mineralization. A hot and weak hinterland is inconsistent with it persisting as an undeformed rigid block. GPE analysis suggests that hinterland quiescence is not uniquely due to thickened crust and elevated GPE, as exemplified by shallow marine sedimentation with low surface elevations in SE China. Comparison of these intracontinental orogens allows us to advance a general model, where hot orogenic hinterlands with a weak, mobile lower crust allow decoupling from underlying basal tractions exerted from flat-slab or underthrusting events. This hypothesis suggests that basal tractions locally drive intraplate orogens, at least partially controlled by the strength of the upper-plate lithosphere. 
    more » « less