skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of dislocations in a 2D anisotropic elastic medium
We study a model of dislocations in two-dimensional elastic media. In this model, the displacement satisfies the system of linear elasticity with mixed displacement-traction homogeneous boundary conditions in the complement of an open curve in a bounded planar domain, and has a specified jump, the slip, across the curve, while the traction is continuous there. The stiffness tensor is allowed to be anisotropic and inhomogeneous. We prove well-posedness of the direct problem in a variational setting, assuming the coefficients are Lipschitz continuous. Using unique continuation arguments, we then establish uniqueness in the inverse problem of determining the dislocation curve and the slip from a single measurement of the displacement on an open patch of the traction-free part of the boundary. Uniqueness holds when the elasticity operators admits a suitable decomposition and the curve satisfies additional geometric assumptions. This work complements the results in Arch. Ration. Mech. Anal., 236(1):71-111, (2020), and in Preprint arXiv:2004.00321, which concern three-dimensional isotropic elastic media.  more » « less
Award ID(s):
1909103
PAR ID:
10249404
Author(s) / Creator(s):
; ; ;
Editor(s):
Mascia, Corrado; Terracina, Andrea; Tesei, Alberto
Date Published:
Journal Name:
Rendiconti di matematica e delle sue applicazioni
Volume:
42
Issue:
3-4
ISSN:
2532-3350
Page Range / eLocation ID:
183-195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a model for elastic dislocations in geophysics. We model a portion of the Earth’s crust as a bounded, inhomogeneous elastic body with a buried fault surface, along which slip occurs. We prove well-posedness of the resulting mixed-boundary-value-transmission problem, assuming only bounded elastic moduli. We establish uniqueness in the inverse problem of determin- ing the fault surface and the slip from a unique measurement of the displacement on an open patch at the surface, assuming in addition that the Earth’s crust is an isotropic, layered medium with Lamé coefficients piecewise Lipschitz on a known partition and that the fault surface satisfies certain geo- metric conditions. These results substantially extend those of the authors in [Arch. Ration. Mech. Anal. 236, 71–111 (2020)]. 
    more » « less
  2. We consider nonlinear elastic wave equations generalizing Goldberg’s five constants model. We analyze the nonlinear interaction of two distorted plane waves and characterize the possible nonlinear responses. Using the boundary measurements of the nonlinear responses, we solve the inverse problem of determining elastic parameters from the displacement-to-traction map. 
    more » « less
  3. SUMMARY We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, that is the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green’s functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting—under the assumption of Gaussian noise and prior—reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada’s solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analysed in a forthcoming paper. 
    more » « less
  4. We introduce a time-dimensional reduction method for the inverse source problem in linear elasticity, where the goal is to reconstruct the initial displacement and velocity fields from partial boundary measurements of elastic wave propagation. The key idea is to employ a novel spectral representation in time, using an orthonormal basis composed of Legendre polynomials weighted by exponential functions. This Legendre polynomial-exponential basis enables a stable and accurate decomposition in the time variable, effectively reducing the original space-time inverse problem to a sequence of coupled spatial elasticity systems that no longer depend on time. These resulting systems are solved using the quasi-reversibility method. On the theoretical side, we establish a convergence theorem ensuring the stability and consistency of the regularized solution obtained by the quasi-reversibility method as the noise level tends to zero. On the computational side, two-dimensional numerical experiments confirm the theory and demonstrate the method's ability to accurately reconstruct both the geometry and amplitude of the initial data, even under substantial measurement noise. The results highlight the effectiveness of the proposed framework as a robust and computationally efficient strategy for inverse elastic source problems. 
    more » « less
  5. A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) distribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deformations and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model and more robust numerically, we posed the following question: How accurately could we map the shear modulus distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We observed that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar trend was observed for simulated experiments, where synthetically computed displacement data were produced and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background increases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this work could be of importance to characterize mechanical property variations of polymer based materials such as rubbers or in elasticity imaging of tissues for pathology. 
    more » « less