The chief objective of this paper is to explore energy transfer mechanism between the sub-systems that are coupled by a nonlinear elastic path. In the proposed model (via a minimal order, two degree of freedom system), both sub-systems are defined as damped harmonic oscillators with linear springs and dampers. The first sub-system is attached to the ground on one side but connected to the second sub-system on the other side. In addition, linear elastic and dissipative characteristics of both oscillators are assumed to be identical, and a harmonic force excitation is applied only on the mass element of second oscillator. The nonlinear spring (placed in between the two sub-systems) is assumed to exhibit cubic, hardening type nonlinearity. First, the governing equations of the two degree of freedom system with a nonlinear elastic path are obtained. Second, the nonlinear differential equations are solved with a semi-analytical (multi-term harmonic balance) method, and nonlinear frequency responses of the system are calculated for different path coupling cases. As such, the nonlinear path stiffness is gradually increased so that the stiffness ratio of nonlinear element to the linear element is 0.01, 0.05, 0.1, 0.5 and 1.0 while the absolute value of linear spring stiffness is kept intact. In all solutions, it is observed that the frequency response curves at the vicinity of resonant frequencies bend towards higher frequencies as expected due to the hardening effect. However, at moderate or higher levels of path coupling (say 0.1, 0.5 and 1.0), additional branches emerge in the frequency response curves but only at the first resonant frequency. This is due to higher displacement amplitudes at the first resonant frequency as compared to the second one. Even though the oscillators move in-phase around the first natural frequency, high amplitudes increase the contribution of the stored potential energy in the nonlinear spring to the total mechanical energy. The out-of-phase motion around the second natural frequency cannot significantly contribute due to very low motion amplitudes. Finally, the governing equations are numerically solved for the same levels of nonlinearity, and the motion responses of both sub-systems are calculated. Both in-phase and out-of-phase motion responses are successfully shown in numerical solutions, and phase portraits of the system are generated in order to illustrate its nonlinear dynamics. In conclusion, a better understanding of the effect of nonlinear elastic path on two damped harmonic oscillators is gained.
more »
« less
Nonlinear interaction of waves in elastodynamics and an inverse problem
We consider nonlinear elastic wave equations generalizing Goldberg’s five constants model. We analyze the nonlinear interaction of two distorted plane waves and characterize the possible nonlinear responses. Using the boundary measurements of the nonlinear responses, we solve the inverse problem of determining elastic parameters from the displacement-to-traction map.
more »
« less
- Award ID(s):
- 1815143
- PAR ID:
- 10109324
- Date Published:
- Journal Name:
- Mathematische Annalen
- ISSN:
- 0025-5831
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spinodal metamaterials, with architectures inspired by natural phase-separation processes, have presented a significant alternative to periodic and symmetric morphologies when designing mechanical metamaterials with extreme performance. While their elastic mechanical properties have been systematically determined, their large-deformation, nonlinear responses have been challenging to predict and design, in part due to limited data sets and the need for complex nonlinear simulations. This work presents a novel physics-enhanced machine learning (ML) and optimization framework tailored to address the challenges of designing intricate spinodal metamaterials with customized mechanical properties in large-deformation scenarios where computational modeling is restrictive and experimental data is sparse. By utilizing large-deformation experimental data directly, this approach facilitates the inverse design of spinodal structures with precise finite-strain mechanical responses. The framework sheds light on instability-induced pattern formation in spinodal metamaterialsobserved experimentally and in selected nonlinear simulations—leveraging physics-based inductive biases in the form of nonconvex energetic potentials. Altogether, this combined ML, experimental, and computational effort provides a route for efficient and accurate design of complex spinodal metamaterials for large-deformation scenarios where energy absorption and prediction of nonlinear failure mechanisms is essential.more » « less
-
ABSTRACT In topology optimization of compliant mechanisms, the specific placement of boundary conditions strongly affects the resulting material distribution and performance of the design. At the same time, the most effective locations of the loads and supports are often difficult to find manually. This substantially limits topology optimization's effectiveness for many mechanism design problems. We remove this limitation by developing a method which automatically determines optimal positioning of a prescribed input displacement and a set of supports simultaneously with an optimal material layout. Using nonlinear elastic physics, we synthesize a variety of compliant mechanisms with large output displacements, snap‐through responses, and prescribed output paths, producing designs with significantly improved performance in every case tested. Compared to optimal designs generated using manually designed boundary conditions used in previous studies, the mechanisms presented in this paper see performance increases ranging from 47% to 380%. The results show that nonlinear mechanism responses may be particularly sensitive to boundary condition locations and that effective placements can be difficult to find without an automated method.more » « less
-
This paper introduces the 3D Peskin problem: a two-dimensional elastic membrane immersed in a three-dimensional steady Stokes flow. We obtain the equations that model this free boundary problem and show that they admit a boundary integral reduction, providing an evolution equation for the elastic interface. We consider general nonlinear elastic laws, i.e. the fully nonlinear Peskin problem, and prove that the problem is well-posed in low-regularity Hölder spaces. Moreover, we prove that the elastic membrane becomes smooth instantly in time.more » « less
-
Abstract We present a machine learning framework to train and validate neural networks to predict the anisotropic elastic response of a monoclinic organic molecular crystal known as ‐HMX in the geometrical nonlinear regime. A filtered molecular dynamic (MD) simulations database is used to train neural networks with a Sobolev norm that uses the stress measure and a reference configuration to deduce the elastic stored free energy functional. To improve the accuracy of the elasticity tangent predictions originating from the learned stored free energy, a transfer learning technique is used to introduce additional tangential constraints from the data while necessary conditions (e.g., strong ellipticity, crystallographic symmetry) for the correctness of the model are either introduced as additional physical constraints or incorporated in the validation tests. Assessment of the neural networks is based on (1) the accuracy with which they reproduce the bottom‐line constitutive responses predicted by MD, (2) the robustness of the models measured by detailed examination of their stability and uniqueness, and (3) the admissibility of the predicted responses with respect to mechanics principles in the finite‐deformation regime. We compare the training efficiency of the neural networks under different Sobolev constraints and assess the accuracy and robustness of the models against MD benchmarks for ‐HMX.more » « less
An official website of the United States government

