skip to main content


Title: Harnessing stratospheric diffusion barriers for enhanced climate geoengineering
Abstract. Stratospheric sulfate aerosol geoengineering is a proposed methodto temporarily intervene in the climate system to increase the reflectance of shortwave radiation and reduce mean global temperature. In previous climate modeling studies, choosing injection locations for geoengineering aerosols has, thus far, only utilized the average dynamics of stratospheric wind fields instead of accounting for the essential role of time-varying material transport barriers in turbulent atmospheric flows. Here we conduct the first analysis of sulfate aerosol dispersion in the stratosphere, comparing what is now a standard fixed-injection scheme with time-varying injection locations that harness short-term stratospheric diffusion barriers. We show how diffusive transport barriers can quickly be identified, and we provide an automated injection location selection algorithm using short forecast and reanalysis data. Within the first 7 d days of transport, the dynamics-based approach is able to produce particle distributions with greater global coverage than fixed-site methods with fewer injections. Additionally, this enhanced dispersion slows aerosol microphysical growth and can reduce the effective radii of aerosols up to 200–300 d after injection. While the long-term dynamics of aerosol dispersion are accurately predicted with transport barriers calculated from short forecasts, the long-term influence on radiative forcing is more difficult to predict and warrants deeper investigation. Statistically significant changes in radiative forcing at timescales beyond the forecasting window showed mixed results, potentially increasing or decreasing forcing after 1 year when compared to fixed injections. We conclude that future feasibility studies of geoengineering should consider the cooling benefits possible by strategically injecting sulfate aerosols at optimized time-varying locations. Our method of utilizing time-varying attracting and repelling structures shows great promise for identifying optimal dispersion locations, and radiative forcing impacts can be improved by considering additional meteorological variables.  more » « less
Award ID(s):
1931641 1818759
NSF-PAR ID:
10249459
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
11
ISSN:
1680-7324
Page Range / eLocation ID:
8845 to 8861
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide (SO2) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur emissions are located at the surface or in the troposphere in the form of carbonyl sulfide (COS) gas. There are two time-dependent chemistry–climate model experiments designed from the years 2021 to 2055, assuming a 40 Tg-Syr-1 artificial global flux of COS, which is geographically distributed following the present-day anthropogenic COS surface emissions (SG-COS-SRF) or a 6 Tg-Syr-1 injection of COS in the tropical upper troposphere (SG-COS-TTL). The budget of COS and sulfur species is discussed, as are the effects of both SG-COS strategies on the stratospheric sulfate aerosol optical depth (∼Δτ=0.080 in the years 2046–2055), aerosol effective radius (0.46 µm), surface SOx deposition (+8.9 % for SG-COS-SRF; +3.3 % for SG-COS-TTL), and tropopause radiative forcing (RF; ∼-1.5 W m−2 in all-sky conditions in both SG-COS experiments). Indirect effects on ozone, methane and stratospheric water vapour are also considered, along with the COS direct contribution. According to our model results, the resulting net RF is −1.3 W m−2, for SG-COS-SRF, and −1.5 W m−2, for SG-COS-TTL, and it is comparable to the corresponding RF of −1.7 W m−2 obtained with a sustained injection of 4 Tg-Syr-1 in the tropical lower stratosphere in the form of SO2 (SG-SO2, which is able to produce a comparable increase of the sulfate aerosol optical depth). Significant changes in the stratospheric ozone response are found in both SG-COS experiments with respect to SG-SO2 (∼5 DU versus +1.4 DU globally). According to the model results, the resulting ultraviolet B (UVB) perturbation at the surface accounts for −4.3 % as a global and annual average (versus −2.4 % in the SG-SO2 case), with a springtime Antarctic decrease of −2.7 % (versus a +5.8 % increase in the SG-SO2 experiment). Overall, we find that an increase in COS emissions may be feasible and produce a more latitudinally uniform forcing without the need for the deployment of stratospheric aircraft. However, our assumption that the rate of COS uptake by soils and plants does not vary with increasing COS concentrations will need to be investigated in future work, and more studies are needed on the prolonged exposure effects to higher COS values in humans and ecosystems. 
    more » « less
  2. Abstract

    Stratospheric aerosol geoengineering focused on the Arctic could substantially reduce local and worldwide impacts of anthropogenic global warming. Because the Arctic receives little sunlight during the winter, stratospheric aerosols present in the winter at high latitudes have little impact on the climate, whereas stratospheric aerosols present during the summer achieve larger changes in radiative forcing. Injecting SO2in the spring leads to peak aerosol optical depth (AOD) in the summer. We demonstrate that spring injection produces approximately twice as much summer AOD as year‐round injection and restores approximately twice as much September sea ice, resulting in less increase in stratospheric sulfur burden, stratospheric heating, and stratospheric ozone depletion per unit of sea ice restored. We also find that differences in AOD between different seasonal injection strategies are small compared to the difference between annual and spring injection.

     
    more » « less
  3. Abstract. We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081–2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (−3.79 ± 0.76 % for G6sulfur compared to −2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures. 
    more » « less
  4. Abstract

    Volcanic and wildfire events between 2014 and 2022 injected ∼3.2 Tg of sulfur dioxide and 0.8 Tg of smoke aerosols into the stratosphere. With injections at higher altitudes and lower latitudes, the simulated stratospheric lifetime of the 2014–2022 injections is about 50% longer than the volcanic 2005–2013 injections. The simulated global mean effective radiative forcing (ERF) of 2014–2022 is −0.18 W m−2, ∼40% of the ERF of the period of 1991–1999 with a large‐magnitude volcanic eruption (Pinatubo). Our climate model suggests that the stratospheric smoke aerosols generate ∼60% more negative ERF than volcanic sulfate per unit aerosol optical depth. Studies that fail to account for the different radiative properties of wildfire smoke relative to volcanic sulfate will likely underestimate the negative stratospheric forcings. Our analysis suggests that stratospheric injections offset 20% of the increase in global mean surface temperature between 2014–2022 and 1999–2002.

     
    more » « less
  5. Abstract. Despite offsetting global mean surface temperature, various studies demonstrated that stratospheric aerosol injection (SAI) could influence the recovery of stratospheric ozone and have important impacts on stratospheric and tropospheric circulation, thereby potentially playing an important role in modulating regional and seasonal climate variability. However, so far, most of the assessments of such an approach have come from climate model simulations in which SO2 is injected only in a single location or a set of locations. Here we use CESM2-WACCM6 SAI simulations under a comprehensive set of SAI strategies achieving the same global mean surface temperature with different locations and/or timing of injections, namely an equatorial injection, an annual injection of equal amounts of SO2 at 15∘ N and 15∘ S, an annual injection of equal amounts of SO2 at 30∘ N and 30∘ S, and a polar strategy injecting SO2 at 60∘ N and 60∘ S only in spring in each hemisphere. We demonstrate that despite achieving the same global mean surface temperature, the different strategies result in contrastingly different magnitudes of the aerosol-induced lower stratospheric warming, stratospheric moistening, strengthening of stratospheric polar jets in both hemispheres, and changes in the speed of the residual circulation. These impacts tend to maximise under the equatorial injection strategy and become smaller as the aerosols are injected away from the Equator into the subtropics and higher latitudes. In conjunction with the differences in direct radiative impacts at the surface, these different stratospheric changes drive different impacts on the extratropical modes of variability (Northern and Southern Annular modes), including important consequences on the northern winter surface climate, and on the intensity of tropical tropospheric Walker and Hadley circulations, which drive tropical precipitation patterns. Finally, we demonstrate that the choice of injection strategy also plays a first-order role in the future evolution of stratospheric ozone under SAI throughout the globe. Overall, our results contribute to an increased understanding of the fine interplay of various radiative, dynamical, and chemical processes driving the atmospheric circulation and ozone response to SAI and lay the foundation for designing an optimal SAI strategy that could form a basis of future multi-model intercomparisons.

     
    more » « less