skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resensitization of Resistant Bacteria to Antimicrobials
Hydraphiles are synthetic amphiphiles that form pores in bilayer membranes. A study was undertaken to determine if the formation of pores could assist the penetration of antibiotics into bacteria. The disruption of ion homeostasis by the pore-formers leads to microbial toxicity. Co-administration of hydraphiles at concentration ≤ ½ MIC and antimicrobials to E. coli or P. aeruginosa showed potency enhancements of up to 30-fold. A possible mechanism is the enhancement of antibiotic influx owing to membrane disruption and/or altering the ion balance within the bacterial cells.  more » « less
Award ID(s):
1710594
PAR ID:
10249499
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Annals of pharmacology and pharmaceutics
Volume:
2
Issue:
10
ISSN:
2573-6051
Page Range / eLocation ID:
1055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To mimic the intricate and adaptive functionalities of biological ion channels, electrohydrodynamic ion transport has been studied extensively, albeit mostly, across uniformly charged nanochannels. Here, we analyze the ion transport under coupled electric field and pressure across heterogeneously charged nanopores with oppositely charged sections on their lateral surface. We only consider such pores with symmetric hourglass-like and cylindrical shapes to focus on the effects of the non-uniform surface charge distribution. Finite-element simulations of a continuum model demonstrate that a pressure applied in either direction of the pore-axis equally suppresses or amplifies the ionic conductance, depending on the electric field polarity, by distorting the quasi-static distribution of ions in the pore. The resulting anomalous mechanical deactivation and activation of ionic current under opposite voltage biases exhibit the functional modularity of our setup, while their intensities are highly tunable, substantially greater than those of analogous behaviors in other nanochannels, and fundamentally correlated to ionic current rectification (ICR) in our pores. A detailed study of ICR subsequently reveals its counterintuitive non-monotonous variations, in the pores, with the magnitude of applied voltage and the pore length, that can help optimize their diode-like behavior. We further illustrate that while the hourglass-shaped nanopores yield the more efficient mechanical suppressors of ion transport, their cylindrical analogs are the superior rectifiers and mechanical amplifiers of ion conduction. Therefore, this article provides a blueprint for the strategic design of nanofluidic circuits to attain a robust, modular, and tunable control of ion transport under external electrical and mechanical stimuli. 
    more » « less
  2. Polycrystalline ion conductors are widely used as solid electrolytes in energy storage technologies. However, they often exhibit poor ion transport across grain boundaries and pores. This work demonstrates that strategically tuning the mesoscale microstructures, including pore size, pore distribution, and chemical compositions of grain boundaries, can improve ion transport. Using LiTa2PO8as a case study, we have shown that the combination of LiF as a sintering agent with Hf4+implantation improves grain-grain contact, resulting in smaller, evenly distributed pores, reduced chemical contrast, and minimized nonconductive impurities. A suite of techniques has been used to decouple the effects of LiF and Hf4+. Specifically, LiF modifies particle shape and breaks large pores into smaller ones, while Hf4+addresses the chemical mismatches between grains and grain boundaries. Consequently, this approach achieves nearly two orders of magnitude improvement in ion conduction. Tuning mesoscale structures offers a cost-effective method for enhancing ion transport in polycrystalline systems and has notable implications for synthesizing high-performance ionic materials. 
    more » « less
  3. null (Ed.)
    Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and thin (16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interaction. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion. 
    more » « less
  4. null (Ed.)
    Tight junctions form a barrier to control passive transport of ions and small molecules across epithelia and endothelia. In addition to forming a barrier, some of claudins control transport properties of tight junctions by forming charge- and size-selective ion channels. It has been suggested claudin monomers can form or incorporate into tight junction strands to form channels. Resolving the crystallographic structure of several claudins in recent years has provided an opportunity to examine structural basis of claudins in tight junctions. Computational and theoretical modeling relying on atomic description of the pore have contributed significantly to our understanding of claudin pores and paracellular transport. In this paper, we review recent computational and mathematical modeling of claudin barrier function. We focus on dynamic modeling of global epithelial barrier function as a function of claudin pores and molecular dynamics studies of claudins leading to a functional model of claudin channels. 
    more » « less
  5. Per- and polyfluoroalkyl substances (PFAS) have garnered attention as a pressing environmental issue due to their enduring presence and suspected adverse health effects. This study assessed the rejection or removal ef- ficacy of PFAS by commercial reverse osmosis (RO) and nanofiltration (NF) membranes and examined the im- pacts of surfactants, ion valency and solution temperature that are inadequately explored. The results reveal that the presence of cationic surfactants such as cetyltrimethylammonium bromide (CTAB) increased the rejection of two selected PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA), by binding with negatively charged PFAS and preventing them from passing through membrane pores via size exclusion, whereas the presence of anionic surfactants such as sodium dodecyl sulfate (SDS) increased the PFAS rejection because the increased electrostatic repulsion prevented PFAS from approaching and adsorbing onto the mem- brane surface. Moreover, aqueous ions (e.g., Al³⁺ and PO³−) with higher ion valency enabled higher rejection of PFOA and PFBA through increased effective molecular size and increased electronegativity. Finally, only high solution temperature at 45 ◦C significantly reduced PFAS rejection efficiency because of the thermally expanded membrane pores and thus the increased leakage of PFAS. Overall, this research provides valuable insights into the various factors impacting PFAS rejection in commercial RO and NF processes. These findings are crucial for developing efficient PFAS removal methods and optimizing existing treatment systems, thereby contributing significantly to the ongoing efforts to combat PFAS contamination. 
    more » « less