skip to main content


Title: Self assembled cages with mechanically interlocked cucurbiturils
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2’-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.  more » « less
Award ID(s):
1807486
NSF-PAR ID:
10249575
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Supramolecular Chemistry
ISSN:
1061-0278
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transition metal interactions with Lewis acids (M → Z linkages) are fundamentally interesting and practically important. The most common Z-type ligands contain boron, which contains an NMR active 11 B nucleus. We measured solid-state 11 B{ 1 H} NMR spectra of copper, silver, and gold complexes containing a phosphine substituted 9,10-diboraanthracene ligand (B 2 P 2 ) that contain planar boron centers and weak M → BR 3 linkages ([(B 2 P 2 )M][BAr F 4 ] (M = Cu (1), Ag (2), Au (3)) characterized by large quadrupolar coupling ( C Q ) values (4.4–4.7 MHz) and large span ( Ω ) values (93–139 ppm). However, the solid-state 11 B{ 1 H} NMR spectrum of K[Au(B 2 P 2 )] − (4), which contains tetrahedral borons, is narrow and characterized by small C Q and Ω values. DFT analysis of 1–4 shows that C Q and Ω are expected to be large for planar boron environments and small for tetrahedral boron, and that the presence of a M → BR 3 linkage relates to the reduction in C Q and 11 B NMR shielding properties. Thus solid-state 11 B NMR spectroscopy contains valuable information about M → BR 3 linkages in complexes containing the B 2 P 2 ligand. 
    more » « less
  2. Goldup, S (Ed.)
    Thermodynamically favored simultaneous coordination of Pt(II) corners with aza- and carboxylate ligands yields tricomponent coordination complexes with sophisticated structures and functions, which require careful structural characterization to paint accurate depiction of their structure–function relationships. Previous reports had claimed that heteroleptic coordination of cis-(Et3P)2PtII with tetrapyridyl porphyrins (M'TPP, M' = Zn or H2) and dicarboxylate ligands (XDC) yielded 3D tetragonal prisms containing two horizontal M'TPP faces and four vertical XDC pillars connected by eight Pt(II) corners, even though such structures were not supported by their 1H NMR data. Through extensive X-ray crystallographic and NMR studies, herein, we demonstrate that self-assembly of cis-(Et3P)2PtII, M'TPP, and four different XDC linkers having varied lengths and rigidity actually yields bow-tie (⋈)-shaped 2D [{cis-(Et3P)2Pt}4(M'TPP)(XDC)2]4+ complexes featuring a M'TPP core and two parallel XDC linkers connected by four heteroleptic PtII corners instead of 3D prisms. This happened because (i) irrespective of their length (~7–11 Å) and rigidity, the XDC linkers intramolecularly bridged two adjacent pyridyl-N atoms of a M'TPP core via PtII corners instead of connecting two cofacial M'TPP ligands and (ii) the bow-tie complexes are entropically more favored over prisms. The electron-rich ZnTPP core of a bow-tie complex selectively formed a charge-transfer complex with highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile but not with a π-donor like pyrene. Thus, this work not only produced novel M'TPP-based bow-tie complexes and demonstrated their selective π-acid recognition capability, but also underscored the importance of proper structural characterization of supramolecular assemblies to ensure accurate depiction of their structure–property relationships. 
    more » « less
  3. A novel synthesis of diphenyl(2-thienyl)phosphine, along with its’ oxide, sulfide and selenide derivatives, is reported here. These phosphines have been characterized by NMR, IR, MS and X-Ray crystallography. The phosphine oxide derivative was reacted with a selection of lanthanide( iii ) nitrates and triflates, LnX 3 , to give the resultant metal–ligand complexes. These complexes have also been characterized by NMR, IR, MS and X-Ray crystallography. Single crystal X-Ray diffraction data shows a difference in metal–ligand complex stoichiometry and stereochemistry depending on the counteranion (nitrate vs. triflate). The [Ln(Ar 3 PO) 3 (NO 3 ) 3 ] ligand–nitrate complexes are nine-coordinate to the metal in the solid state (bidentate nitrate), featuring a 1 : 3 lanthanide–ligand ratio and bear an overall octahedral arrangement of the six, coordinated ligands. Our [Ln(Ar 3 PO) 3 (NO 3 ) 3 ] ligand–nitrate complexes gave three examples of fac -stereochemistry, where mer -stereochemistry is almost universally observed in the literature of highly related [Ln(Ar 3 PO) 3 (NO 3 ) 3 ] complexes. For the Tb complexes, two different arrangements of the ligands around the metal were observed in the solid state for [Tb(Ar 3 PO) 3 (NO 3 ) 3 ] and [Tb(Ar 3 PO) 4 (OTf) 2 ] [OTf]. [Tb(Ar 3 PO) 3 (NO 3 ) 3 ] is strictly nine-coordinate, ligand mer -stereochemistry in the solid state, and [Tb(Ar 3 PO) 4 (OTf) 2 ] [OTf] is strictly octahedral, six-coordinate, with a square-planar stereochemical arrangement of the phosphine oxide ligands around the metal. 
    more » « less
  4. Investigations into the reactivity, properties, and applications of osmium(IV) tetraaryl complexes have been hampered by their low yielding syntheses from volatile and toxic OsO4 (typically ≤34%). Here we show that known air-stable M(aryl)4 compounds (M = Os, Ru; aryl = 2-tolyl, 2,5-xylyl) can be prepared in ≤73% yields using new, less hazardous (Oct4N)2[MX6] precursors (M = Os, Ru; X = Cl, Br). This approach also facilitates the preparation of Os(mesityl)4 (Os3) for the first time, a complex comprising bulky 2,6-dimethyl substituted aryl ligands, albeit in low yield (5%). To better understand these yield extremes, we track, by synthesizing two additional new complexes with different 2-substituted σ-aryl ligands, a clear relationship between the yields of Os(aryl)4 and ligand steric bulk. Single-crystal X-ray structures of these compounds indicate that the observed yield trend reflects the ease of accommodating aryl substituents into an open pocket that lies directly opposite each M-aryl coordination site. We perform variable-temperature 1H NMR studies of Os3, utilize a "tetrahedricity" metric to assess geometric distortion in Ru(aryl)4 and Os(aryl)4 materials, and calculate cone angle and percentage buried volume metrics to further illustrate and help quantify -aryl ligand steric properties. Solution cyclic voltammograms of Os(aryl)4 show that the potentials of their reversible 1−/0 and 0/1+ redox features can be fine-tuned by varying aryl substituents, and that Os3 exhibits an additional 1+/2+ redox event not previously observed in this class of compounds. Taken together, this work helps to advance the potential application of these relatively underexplored organometallic complexes in established and emerging areas of molecular materials science, such as extended molecular frameworks and self-assembled monolayers, where analogous tetraphenylmethane and silane species (M = C, Si) have been frequently targeted. 
    more » « less
  5. Abstract

    Complexation between a viologen radical cation (V.+) and cyclobis(paraquat‐p‐phenylene) diradical dication (CBPQT2(.+)) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair ofV.+using radical‐pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+) in a size‐matched bisradical dicationic host — namely, cyclobis(paraquat‐2,6‐naphthalene)2(.+), i.e.,CBPQN2(.+). Central to this dual recognition process was the choice of 2,6‐bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations inCBPQN2(.+)suitable for binding twoMV.+with relatively short (3.05–3.25 Å) radical‐pairing distances. The size‐matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the twoMV.+in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex — namely, [(MV)2CBPQN]4(.+)– in MeCN was confirmed by VT1H NMR, as well as by EPR spectroscopy. The solid‐state superstructure of [(MV)2CBPQN]4(.+)reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three differentV.+, suggesting that localization of the radical‐pairing interactions has a strong influence on the packing of the twoMV.+inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host‐guest radical‐pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox‐switchable recognition motif for the construction of MIMs and AMMs.

     
    more » « less