skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kinetically Controlled Synthesis of Rotaxane Geometric Isomers
Geometric isomerism in mechanically interlocked systems — which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric — can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.  more » « less
Award ID(s):
1945394 2317652 1848444
PAR ID:
10490034
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although catenanes comprising two ring-shaped components can be made in large quantities by templation, the preparation of three-dimensional (3D) catenanes with cage-shaped components is still in its infancy. Here, we report the design and syntheses of two 3D catenanes by a sequence of S N 2 reactions in one pot. The resulting triply mechanically interlocked molecules were fully characterized in both the solution and solid states. Mechanistic studies have revealed that a suit[3]ane, which contains a threefold symmetric cage component as the suit and a tribromide component as the body, is formed at elevated temperatures. This suit[3]ane was identified as the key reactive intermediate for the selective formation of the two 3D catenanes which do not represent thermodynamic minima. We foresee a future in which this particular synthetic strategy guides the rational design and production of mechanically interlocked molecules under kinetic control. 
    more » « less
  2. null (Ed.)
    Poly[ n ]catenanes are a class of polymers that are composed entirely of interlocked rings. One synthetic route to these polymers involves the formation of a metallosupramolecular polymer (MSP) that consists of alternating units of macrocyclic and linear thread components. Ring closure of the thread components has been shown to yield a mixture of cyclic, linear, and branched poly[ n ]catenanes. Reported herein are investigations into this synthetic methodology, with a focus on a more detailed understanding of the crude product distribution and how the concentration of the MSP during the ring closing reaction impacts the resulting poly[ n ]catenanes. In addition to a better understanding of the molecular products obtained in these reactions, the results show that the concentration of the reaction can be used to tune the size and type of poly[ n ]catenanes accessed. At low concentrations the interlocked product distribution is limited to primarily oligomeric and small cyclic catenanes . However, the same reaction at increased concentration can yield branched poly[ n ]catenanes with an ca. 21 kg mol −1 , with evidence of structures containing as many as 640 interlocked rings (1000 kg mol −1 ). 
    more » « less
  3. “Orientational isomerism” is a concept necessary for deeper understanding of the selective reactivities in a host-guest system. This concept has been rarely explored in the context of supramolecular host guest chemistry. We designed a model system including four cyclohexene derivatives and a water-soluble host Octa Acid (OA), with hydrophobic inner cavity. The overall length of the guest molecules (~ 12 Å) was limited by manipulating the alkyl substituents at 1- and 4-positions on the cyclohexene ring. 1D 1H /2D COSY and NOESY NMR and photooxygenation reaction were used to understand the observations with this model system. Specific packaging or “orientational isomerism” of each guest molecule, induced by the host OA led to specific, in one case enhanced product selectivity. With this model system we show the important role of “orientational isomerism” in explaining enhanced product selectivity in a host-guest supramolecular system. 
    more » « less
  4. The photocatalytic reduction of CO2 can generate a number of products with CO and HCO2− being two of the most commonly observed. Frequently, the selective formation of one of these products is presumed to be the result of catalyst design. However, several common variables are present when exploring the photocatalytic CO2 reduction reaction. In order to better understand the origin of selectivity in this reaction, the choices of solvent, electron and proton source, photosensitizer (PS), and catalyst were evaluated in photocatalytic CO2 reduction reactions. Intriguingly, highly selective catalysts for CO or HCO2− under one set of conditions can be transformed by these environmental choices into becoming highly selective for the opposite product while retaining high turnover numbers. This highlights the importance of carefully considering reaction conditions before ascribing catalyst selectivity to an inherent molecular design property. 
    more » « less
  5. Abstract Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments—[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles—may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal‐ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu‐catalyzed azide‐alkyne cycloaddition (AT−CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2′‐bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT−CuAAC reaction to provide [2]rotaxanes in near‐quantitative yield, which can then be converted into the fully π‐conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (whereTzdenotes a 1,2,3‐triazole moiety replacing one phenylene ring in the [n]CPP backbone). 
    more » « less