skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Unified Optimization Framework and New Set of Performance Metrics for Robot Leg Design
This work presents a framework for the simultaneous optimization of motors, transmissions, and mechanisms of different joints of robotic legs with the goal of achieving an energy efficient, precisely controllable and stable locomotion in dynamic environments. This unified framework allowed us to introduce and formulate new performance metrics for the separate evaluation of the system’s stabilizing ability during stance and swing. Moreover, through a case study, this design optimization framework was applied to an anthropomorphic robot leg model and the optimal actuation configurations for the leg were obtained. This case study also helped us investigate the relationships among our three objectives (energy efficiency, and stance and swing control). It was shown that while in some cases a clear trade-off exists, it is not always valid and as such, careful consideration of all three objectives is necessary.  more » « less
Award ID(s):
1953908
PAR ID:
10249613
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation
ISSN:
1049-3492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles. 
    more » « less
  2. null (Ed.)
    In this work, we introduce a novel approach to assistive exoskeleton (or powered orthosis) control which avoids needing task and gait phase information. Our approach is based on directly designing the Hamiltonian dynamics of the target closed-loop behavior, shaping the energy of the human and the robot. Relative to previous energy shaping controllers for assistive exoskeletons, we introduce ground reaction force and torque information into the target behavior definition, reformulate the kinematics so as to avoid explicit matching conditions due to under-actuation, and avoid the need to switch between swing and stance energy shapes. Our controller introduces new states into the target Hamiltonian energy that represent a virtual second leg that is connected to the physical leg using virtual springs. The impulse the human imparts to the physical leg is amplified and applied to the virtual leg, but the ground reaction force acts only on the physical leg. A state transformation allows the proposed control to be available using only encoders, an IMU, and ground reaction force sensors. We prove that this controller is stable and passive when acted on by the ground reaction force and demonstrate the controller's strength amplifying behavior in a simulation. A linear analysis based on small signal assumptions allows us to explain the relationship between our tuning parameters and the frequency domain amplification bandwidth. 
    more » « less
  3. Abstract Navigating complex terrains requires dynamic interactions between the substrate, musculoskeletal, and sensorimotor systems. Current perturbation studies have mostly used visible terrain height perturbations, which do not allow us to distinguish among the neuromechanical contributions of feedforward control, feedback-mediated, and mechanical perturbation responses. Here, we use treadmill-belt speed perturbations to induce a targeted perturbation to foot speed only, and without terrain-induced changes in joint posture and leg loading at stance onset. Based on previous studies suggesting a proximo-distal gradient in neuromechanical control, we hypothesized that distal joints would exhibit larger changes in joint kinematics, compared to proximal joints. Additionally, we expected birds to use feedforward strategies to increase the intrinsic stability of gait. To test these hypotheses, seven adult guinea fowl were video recorded while walking on a motorized treadmill, during both steady and perturbed trials. Perturbations consisted of repeated exposures to a deceleration and acceleration of the treadmill-belt speed. Surprisingly, we found that joint angular trajectories and center of mass fluctuations remain very similar, despite substantial perturbation of foot velocity by the treadmill belt. Hip joint angular trajectories exhibit the largest changes, with the birds adopting a slightly more flexed position across all perturbed strides. Additionally, we observed increased stride duration across all strides, consistent with feedforward changes in the control strategy. The speed perturbations mainly influenced the timing of stance and swing, with the largest kinematic changes in the strides directly following a deceleration. Our findings do not support the general hypothesis of a proximo-distal gradient in joint control, as distal joint kinematics remain largely unchanged. Instead, we find that leg angular trajectory and the timing of stance and swing are most sensitive to this specific perturbation, and leg length actuation remains largely unchanged. Our results are consistent with modular task-level control of leg length and leg angle actuation, with different neuromechanical control and perturbation sensitivity in each actuation mode. Distal joints appear to be sensitive to changes in vertical loading but not foot fore-aft velocity. Future directions should include in vivo studies of muscle activation and force–length dynamics to provide more direct evidence of the sensorimotor control strategies for stability in response to belt-speed perturbations. 
    more » « less
  4. Jiang, Jingang (Ed.)
    Most current powered transfemoral prostheses are designed based on replicating normal anatomy with the inclusion of a revolute knee joint. Prosthesis users often have issues achieving proper leg length to maintain balance and perform push-off during stance, and to ensure sufficient toe clearance during swing. There is a clinical opportunity to develop a powered prosthesis that linearly shortens and lengthens during ambulation with a prismatic joint for improved leg length properties. To build on previous work, the research in this manuscript focuses on designing the physical device, the leg length actuation profile, and the control scheme. Based on gait analyses of two prosthesis users, the device provides an appropriate leg length actuation profile with sufficient shortening for toe clearance (exhibited by the greater prosthetic vs. intact side toe clearance) and lengthening for forward propulsion (exhibited by the ground reaction force peak in late stance). The device also has a motor torque and velocity capable of supporting up to a 90 kg user during normal ambulation, a control scheme with an adjustable actuation cycle based on gait cadence (matching within 2 ms), and a more compact mechanical system design (4.5 kg) less than anatomical weight requirements (5.5 kg). Additionally, the prosthesis users tested were highly encouraging of their stability, mobility, and safety while ambulating with the device. 
    more » « less
  5. (1) Background: An iterative learning control (ILC) strategy was developed for a “Muscle First” Motor-Assisted Hybrid Neuroprosthesis (MAHNP). The MAHNP combines a backdrivable exoskeletal brace with neural stimulation technology to enable persons with paraplegia due to spinal cord injury (SCI) to execute ambulatory motions and walk upright. (2) Methods: The ILC strategy was developed to swing the legs in a biologically inspired ballistic fashion. It maximizes muscular recruitment and activates the motorized exoskeletal bracing to assist the motion as needed. The control algorithm was tested using an anatomically realistic three-dimensional musculoskeletal model of the lower leg and pelvis suitably modified to account for exoskeletal inertia. The model was developed and tested with the OpenSim biomechanical modeling suite. (3) Results: Preliminary data demonstrate the efficacy of the controller in swing-leg simulations and its ability to learn to balance muscular and motor contributions to improve performance and accomplish consistent stepping. In particular, the controller took 15 iterations to achieve the desired outcome with 0.3% error. 
    more » « less