Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca aremore »
Discovery of multivalley Fermi surface responsible for the high thermoelectric performance in Yb 14 MnSb 11 and Yb 14 MgSb 11
The Zintl phases, Yb 14 M Sb 11 ( M = Mn, Mg, Al, Zn), are now some of the highest thermoelectric efficiency p-type materials with stability above 873 K. Yb 14 MnSb 11 gained prominence as the first p-type thermoelectric material to double the efficiency of SiGe alloy, the heritage material in radioisotope thermoelectric generators used to power NASA’s deep space exploration. This study investigates the solid solution of Yb 14 Mg 1− x Al x Sb 11 (0 ≤ x ≤ 1), which enables a full mapping of the metal-to-semiconductor transition. Using a combined theoretical and experimental approach, we show that a second, high valley degeneracy ( N v = 8) band is responsible for the groundbreaking performance of Yb 14 M Sb 11 . This multiband understanding of the properties provides insight into other thermoelectric systems (La 3− x Te 4 , SnTe, Ag 9 AlSe 6 , and Eu 9 CdSb 9 ), and the model predicts that an increase in carrier concentration can lead to zT > 1.5 in Yb 14 M Sb 11 systems.
- Award ID(s):
- 2001156
- Publication Date:
- NSF-PAR ID:
- 10249756
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 4
- Page Range or eLocation-ID:
- eabe9439
- ISSN:
- 2375-2548
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A rare-earth-containing compound, ytterbium aluminium antimonide, Yb 3 AlSb 3 (Ca 3 AlAs 3 -type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb 2+ ) 3 [(Al 1− )( 1b – Sb 2− ) 2 ( 2b – Sb 1− )], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb 4 tetrahedra, [AlSb 2 Sb 2/2 ] 6− , with Yb 2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bimore »
-
Herein we study the effect alloying Yb onto the octahedral cite of Te doped Mg 3 Sb 1.5 Bi 0.5 has on transport and the material's high temperature stability. We show that the reduction in mobility can be well explained with an alloy scattering argument due to disrupting the Mg octahedral –Mg tetrahedral interaction that is important for placing the conduction band minimum at a location with high valley degeneracy. We note this interaction likely dominates the conducting states across n-type Mg 3 Sb 2 –Mg 3 Bi 2 solid solutions and explains why alloying on the anion site with Bi isn't detrimental to Mg 3 Sb 2 's mobility. In addition to disrupting this Mg–Mg interaction, we find that alloying Yb into the Mg 3 Sb 2 structure reduces its n-type dopability, likely originating from a change in the octahedral site's vacancy formation energy. We conclude showing that while the material's figure of merit is reduced with the addition of Yb alloying, its high temperature stability is greatly improved. This study demonstrates a site-specific alloying effect that will be important in other complex thermoelectric semiconductors such as Zintl phases.