skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Digital Marshmallow Test (DMT) Diagnostic and Monitoring Mobile Health App for Impulsive Behavior: Development and Validation Study
Background The classic Marshmallow Test, where children were offered a choice between one small but immediate reward (eg, one marshmallow) or a larger reward (eg, two marshmallows) if they waited for a period of time, instigated a wealth of research on the relationships among impulsive responding, self-regulation, and clinical and life outcomes. Impulsivity is a hallmark feature of self-regulation failures that lead to poor health decisions and outcomes, making understanding and treating impulsivity one of the most important constructs to tackle in building a culture of health. Despite a large literature base, impulsivity measurement remains difficult due to the multidimensional nature of the construct and limited methods of assessment in daily life. Mobile devices and the rise of mobile health (mHealth) have changed our ability to assess and intervene with individuals remotely, providing an avenue for ambulatory diagnostic testing and interventions. Longitudinal studies with mobile devices can further help to understand impulsive behaviors and variation in state impulsivity in daily life. Objective The aim of this study was to develop and validate an impulsivity mHealth diagnostics and monitoring app called Digital Marshmallow Test (DMT) using both the Apple and Android platforms for widespread dissemination to researchers, clinicians, and the general public. Methods The DMT app was developed using Apple’s ResearchKit (iOS) and Android’s ResearchStack open source frameworks for developing health research study apps. The DMT app consists of three main modules: self-report, ecological momentary assessment, and active behavioral and cognitive tasks. We conducted a study with a 21-day assessment period (N=116 participants) to validate the novel measures of the DMT app. Results We used a semantic differential scale to develop self-report trait and momentary state measures of impulsivity as part of the DMT app. We identified three state factors (inefficient, thrill seeking, and intentional) that correlated highly with established measures of impulsivity. We further leveraged momentary semantic differential questions to examine intraindividual variability, the effect of daily life, and the contextual effect of mood on state impulsivity and daily impulsive behaviors. Our results indicated validation of the self-report sematic differential and related results, and of the mobile behavioral tasks, including the Balloon Analogue Risk Task and Go-No-Go task, with relatively low validity of the mobile Delay Discounting task. We discuss the design implications of these results to mHealth research. Conclusions This study demonstrates the potential for assessing different facets of trait and state impulsivity during everyday life and in clinical settings using the DMT mobile app. The DMT app can be further used to enhance our understanding of the individual facets that underlie impulsive behaviors, as well as providing a promising avenue for digital interventions. Trial Registration ClinicalTrials.gov NCT03006653; https://www.clinicaltrials.gov/ct2/show/NCT03006653  more » « less
Award ID(s):
1700832
PAR ID:
10249795
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
JMIR mHealth and uHealth
Volume:
9
Issue:
1
ISSN:
2291-5222
Page Range / eLocation ID:
e25018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Mobile health technology has demonstrated the ability of smartphone apps and sensors to collect data pertaining to patient activity, behavior, and cognition. It also offers the opportunity to understand how everyday passive mobile metrics such as battery life and screen time relate to mental health outcomes through continuous sensing. Impulsivity is an underlying factor in numerous physical and mental health problems. However, few studies have been designed to help us understand how mobile sensors and self-report data can improve our understanding of impulsive behavior. Objective The objective of this study was to explore the feasibility of using mobile sensor data to detect and monitor self-reported state impulsivity and impulsive behavior passively via a cross-platform mobile sensing application. Methods We enrolled 26 participants who were part of a larger study of impulsivity to take part in a real-world, continuous mobile sensing study over 21 days on both Apple operating system (iOS) and Android platforms. The mobile sensing system (mPulse) collected data from call logs, battery charging, and screen checking. To validate the model, we used mobile sensing features to predict common self-reported impulsivity traits, objective mobile behavioral and cognitive measures, and ecological momentary assessment (EMA) of state impulsivity and constructs related to impulsive behavior (ie, risk-taking, attention, and affect). Results Overall, the findings suggested that passive measures of mobile phone use such as call logs, battery charging, and screen checking can predict different facets of trait and state impulsivity and impulsive behavior. For impulsivity traits, the models significantly explained variance in sensation seeking, planning, and lack of perseverance traits but failed to explain motor, urgency, lack of premeditation, and attention traits. Passive sensing features from call logs, battery charging, and screen checking were particularly useful in explaining and predicting trait-based sensation seeking. On a daily level, the model successfully predicted objective behavioral measures such as present bias in delay discounting tasks, commission and omission errors in a cognitive attention task, and total gains in a risk-taking task. Our models also predicted daily EMA questions on positivity, stress, productivity, healthiness, and emotion and affect. Perhaps most intriguingly, the model failed to predict daily EMA designed to measure previous-day impulsivity using face-valid questions. Conclusions The study demonstrated the potential for developing trait and state impulsivity phenotypes and detecting impulsive behavior from everyday mobile phone sensors. Limitations of the current research and suggestions for building more precise passive sensing models are discussed. Trial Registration ClinicalTrials.gov NCT03006653; https://clinicaltrials.gov/ct2/show/NCT03006653 
    more » « less
  2. null (Ed.)
    Background Cardiovascular disease (CVD) disparities are a particularly devastating manifestation of health inequity. Despite advancements in prevention and treatment, CVD is still the leading cause of death in the United States. Additionally, research indicates that African American (AA) and other ethnic-minority populations are affected by CVD at earlier ages than white Americans. Given that AAs are the fastest-growing population of smartphone owners and users, mobile health (mHealth) technologies offer the unparalleled potential to prevent or improve self-management of chronic disease among this population. Objective To address the unmet need for culturally tailored primordial prevention CVD–focused mHealth interventions, the MOYO app was cocreated with the involvement of young people from this priority community. The overall project aims to develop and evaluate the effectiveness of a novel smartphone app designed to reduce CVD risk factors among urban-AAs, 18-29 years of age. Methods The theoretical underpinning will combine the principles of community-based participatory research and the agile software development framework. The primary outcome goals of the study will be to determine the usability, acceptability, and functionality of the MOYO app, and to build a cloud-based data collection infrastructure suitable for digital epidemiology in a disparity population. Changes in health-related parameters over a 24-week period as determined by both passive (eg, physical activity levels, sleep duration, social networking) and active (eg, use of mood measures, surveys, uploading pictures of meals and blood pressure readings) measures will be the secondary outcome. Participants will be recruited from a majority AA “large city” school district, 2 historically black colleges or universities, and 1 urban undergraduate college. Following baseline screening for inclusion (administered in person), participants will receive the beta version of the MOYO app. Participants will be monitored during a 24-week pilot period. Analyses of varying data including social network dynamics, standard metrics of activity, percentage of time away from a given radius of home, circadian rhythm metrics, and proxies for sleep will be performed. Together with external variables (eg, weather, pollution, and socioeconomic indicators such as food access), these metrics will be used to train machine-learning frameworks to regress them on the self-reported quality of life indicators. Results This 5-year study (2015-2020) is currently in the implementation phase. We believe that MOYO can build upon findings of classical epidemiology and longitudinal studies like the Jackson Heart Study by adding greater granularity to our knowledge of the exposures and behaviors that affect health and disease, and creating a channel for outreach capable of launching interventions, clinical trials, and enhancements of health literacy. Conclusions The results of this pilot will provide valuable information about community cocreation of mHealth programs, efficacious design features, and essential infrastructure for digital epidemiology among young AA adults. International Registered Report Identifier (IRRID) DERR1-10.2196/16699 
    more » « less
  3. With the rapid growth of technology, accessing digital health records has become increasingly easier. Especially mobile health technology like mHealth apps help users to manage their health information, as well as store, share and access medical records and treatment information. Along with this huge advancement, mHealth apps are increasingly at risk of exposing protected health information (PHI) when security measures are not adequately implemented. The Health Insurance Portability and Accountability Act (HIPAA) ensures the secure handling of PHI, and mHealth applications are required to comply with its standards. But it is unfortunate to note that many mobile and mHealth app developers, along with their security teams, lack sufficient awareness of HIPAA regulations, leading to inadequate implementation of compliance measures. Moreover, the implementation of HIPAA security should be integrated into applications from the earliest stages of development to ensure data security and regulatory adherence throughout the software lifecycle. This highlights the need for a comprehensive framework that supports developers from the initial stages of mHealth app development and fosters HIPAA compliance awareness among security teams and end users. An iOS framework has been designed for integration into the Integrated Development Environment(IDE), accompanied by a web application to visualize HIPAA security concerns in mHealth app development. The web application is intended to guide both developers and security teams on HIPAA compliance, offering insights on incorporating regulations into source code, with the IDE framework enabling the identification and resolution of compliance violations during development. The aim is to encourage the design of secure and compliant mHealth applications that effectively safeguard personal health information. 
    more » « less
  4. Introduction: Impulsivity is a symptom of Attention-Deficit/Hyperactivity Disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene [OMIM 616417] have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. “Positive control” measures were also collected in Spontaneously Hypertensive Rats (SHRs), another animal model of ADHD. Methods: For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results: The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 sec inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion: Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not. 
    more » « less
  5. Abstract Research shows that skills for improving Psychological Well‐Being (PWB) may belearnedthrough PWB interventions; however, the dynamic mechanisms underlying this learning process are not well understood. Using an Ecological Momentary Intervention (EMI) design, we conducted an 8‐week Randomized Controlled Trial (N = 160; aged 18–22 years), implemented in a mobile Health (mHealth) platform to characterize these dynamical mechanisms. College‐attending early adults were randomized to three groups: an active control group (N = 55); an intervention group (N = 51) with positive practices intervention; and a second intervention group (N = 54) with positive practices and meditation intervention. The mHealth implementation allowed us to introduce the interventions in participants' daily lives while also assessing their PWB (in terms of positive emotions and relationship quality) several times a day. We used a Bayesian process model to analyze changes in PWB in terms of the underlying dynamical characteristics of change. Findings suggested that the mobile assessment tool itself may have longitudinally improved college‐attending early adults' PWB, as evidenced by instances of directional changes in dynamic characteristics (increased within‐person mean levels, decreased intra‐individual variability, and increased regulation) of PWB measures. Moderation analysis also revealed that people who were low on negative affect improved the most in terms of their mean levels of positive emotions and relationship quality. 
    more » « less