skip to main content


Title: Groundwater dependence of riparian woodlands and the disrupting effect of anthropogenically altered streamflow

Riparian ecosystems fundamentally depend on groundwater, especially in dryland regions, yet their water requirements and sources are rarely considered in water resource management decisions. Until recently, technological limitations and data gaps have hindered assessment of groundwater influences on riparian ecosystem health at the spatial and temporal scales relevant to policy and management. Here, we analyze Sentinel-2–derived normalized difference vegetation index (NDVI;n= 5,335,472 observations), field-based groundwater elevation (n= 32,051 observations), and streamflow alteration data for riparian woodland communities (n= 22,153 polygons) over a 5-y period (2015 to 2020) across California. We find that riparian woodlands exhibit a stress response to deeper groundwater, as evidenced by concurrent declines in greenness represented by NDVI. Furthermore, we find greater seasonal coupling of canopy greenness to groundwater for vegetation along streams with natural flow regimes in comparison with anthropogenically altered streams, particularly in the most water-limited regions. These patterns suggest that many riparian woodlands in California are subsidized by water management practices. Riparian woodland communities rely on naturally variable groundwater and streamflow components to sustain key ecological processes, such as recruitment and succession. Altered flow regimes, which stabilize streamflow throughout the year and artificially enhance water supplies to riparian vegetation in the dry season, disrupt the seasonal cycles of abiotic drivers to which these Mediterranean forests are adapted. Consequently, our analysis suggests that many riparian ecosystems have become reliant on anthropogenically altered flow regimes, making them more vulnerable and less resilient to rapid hydrologic change, potentially leading to future riparian forest loss across increasingly stressed dryland regions.

 
more » « less
Award ID(s):
1700555 1660490 1700517
NSF-PAR ID:
10249826
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
25
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2026453118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  2. Abstract

    Semi‐arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape‐scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (Populus fremontii)‐Willow (Salix gooddingii) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud‐based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data‐based calibrations to vegetation structure (leaf‐area index, LAI), and open‐source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach‐scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach‐scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent‐flow stream reaches. At perennial‐flow reaches, ET correlated significantly with temperature, whilst at intermittent‐flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water‐use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities.

     
    more » « less
  3. Abstract

    Hydraulic redistribution is the transport of water from wet to dry soil layers, upward or downward, through plant roots. Often in savanna and woodland ecosystems, deep‐rooted trees, and shallow‐rooted grasses coexist. The degree to which these different species compete for or share soil‐water derived from precipitation or groundwater, as well as how these interactions are altered by hydraulic redistribution, is unknown. We use a multilayer canopy model and field observations to examine how the presence of deep, but tree‐root accessible, groundwater impacts seasonal patterns of hydraulic redistribution, and interaction between coexisting vegetation species in a semiarid riparian woodland (US‐CMW). Based on the simulation, trees absorb moisture at the water table (∼10 m depth) and release it in the shallow soil depth (0–3 m) during the dry pre‐monsoon season. We observed the occurrence of a new convergent hydraulic redistribution pattern during the monsoon season, where moisture is transported from both the near‐surface (0–0.5 m) and the water table to intermediate soil layers (1–5 m) through tree roots. We found that hydraulic redistribution demonstrates a growth facilitation effect at this site, supporting 49% of growing season tree transpiration and 14% of the grass transpiration. Compared to a similarly structured upland savanna without accessible groundwater, the riparian site shows an increased amount of hydraulically redistributed water and more facilitative water use between coexisting grasses and trees. These results shed light on the linkage between accessible groundwater and the role of hydraulic redistribution on the interaction between deep‐rooted and shallow‐rooted vegetation.

     
    more » « less
  4. Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13C) during peak drought years. However, patterns of radial growth and Δ13C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13C for individual trees, and higher inter-correlation of Δ13C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year−1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded 3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures. 
    more » « less
  5. Abstract. Dryland regions are characterised by water scarcity and are facingmajor challenges under climate change. One difficulty is anticipating howrainfall will be partitioned into evaporative losses, groundwater, soilmoisture, and runoff (the water balance) in the future, which has importantimplications for water resources and dryland ecosystems. However, in orderto effectively estimate the water balance, hydrological models in drylandsneed to capture the key processes at the appropriate spatio-temporal scales.These include spatially restricted and temporally brief rainfall, highevaporation rates, transmission losses, and focused groundwater recharge.Lack of available input and evaluation data and the high computational costsof explicit representation of ephemeral surface–groundwater interactionsrestrict the usefulness of most hydrological models in these environments.Therefore, here we have developed a parsimonious distributed hydrologicalmodel for DRYland Partitioning (DRYP). The DRYP model incorporates the keyprocesses of water partitioning in dryland regions with limited datarequirements, and we tested it in the data-rich Walnut Gulch ExperimentalWatershed against measurements of streamflow, soil moisture, andevapotranspiration. Overall, DRYP showed skill in quantifying the maincomponents of the dryland water balance including monthly observations ofstreamflow (Nash–Sutcliffe efficiency, NSE, ∼ 0.7),evapotranspiration (NSE > 0.6), and soil moisture (NSE ∼ 0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment andthat < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost throughephemeral channels as transmission losses. However, only ∼ 35 % of the total transmission losses percolate to the groundwater aquiferas focused groundwater recharge, whereas the rest is lost to the atmosphereas riparian evapotranspiration. Overall, DRYP is a modular, versatile, andparsimonious Python-based model which can be used to anticipate and plan forclimatic and anthropogenic changes to water fluxes and storage in drylandregions. 
    more » « less