skip to main content


Title: Local groundwater decline exacerbates response of dryland riparian woodlands to climatic drought
Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13C) during peak drought years. However, patterns of radial growth and Δ13C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13C for individual trees, and higher inter-correlation of Δ13C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year−1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded 3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.  more » « less
Award ID(s):
1660490 1700517
NSF-PAR ID:
10366256
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Global Change Biology
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Drought‐induced groundwater decline and warming associated with climate change are primary threats to dryland riparian woodlands. We used the extreme 2012–2019 drought in southern California as a natural experiment to assess how differences in water‐use strategies and groundwater dependence may influence the drought susceptibility of dryland riparian tree species with overlapping distributions. We analyzed tree‐ring stable carbon and oxygen isotopes collected from two cottonwood species (Populus trichocarpaandP.fremontii) along the semi‐arid Santa Clara River. We also modeled tree source water δ18O composition to compare with observed source water δ18O within the floodplain to infer patterns of groundwater reliance. Our results suggest that both species functioned as facultative phreatophytes that used shallow soil moisture when available but ultimately relied on groundwater to maintain physiological function during drought. We also observed apparent species differences in water‐use strategies and groundwater dependence related to their regional distributions.P.fremontiiwas constrained to more arid river segments and ostensibly used a greater proportion of groundwater to satisfy higher evaporative demand.P.fremontiimaintained ∆13C at pre‐drought levels up until the peak of the drought, when trees experienced a precipitous decline in ∆13C. This response pattern suggests that trees prioritized maintaining photosynthetic processes over hydraulic safety, until a critical point. In contrast,P.trichocarpashowed a more gradual and sustained reduction in ∆13C, indicating that drought conditions induced stomatal closure and higher water use efficiency. This strategy may confer drought avoidance forP.trichocarpawhile increasing its susceptibility to anticipated climate warming.

     
    more » « less
  2. Hui, Dafeng (Ed.)
    Abstract Aims Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to changes in the mean and variance of groundwater resources. Methods We leveraged spatiotemporal variation in long-term datasets of riparian vegetation cover and groundwater levels to build the first groundwater sensitivity functions for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered with declining groundwater stores. Important Findings Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater inter-annual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the short time series (16 years) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores. 
    more » « less
  3. Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to future changes in both the mean and variance of groundwater resources. We leveraged spatiotemporal variation in a long-term dataset of riparian vegetation cover to build the first groundwater sensitivity functions (GSFs) for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered on top of declining groundwater stores. Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater interannual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the relatively short time series (16 y) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores. 
    more » « less
  4. Abstract Background and Aims In dryland ecosystems, conifer species are threatened by more frequent and severe droughts, which can push species beyond their physiological limits. Adequate seedling establishment will be critical for future resilience to global change. We used a common garden glasshouse experiment to determine how seedling functional trait expression and plasticity varied among seed sources in response to a gradient of water availability, focusing on a foundational dryland tree species of the western USA, Pinus monophylla. We hypothesized that the expression of growth-related seedling traits would show patterns consistent with local adaptation, given clinal variation among seed source environments. Methods We collected P. monophylla seeds from 23 sites distributed across rangewide gradients of aridity and seasonal moisture availability. A total of 3320 seedlings were propagated with four watering treatments representing progressively decreasing water availability. Above- and below-ground growth-related traits of first-year seedlings were measured. Trait values and trait plasticity, here representing the degree of variation among watering treatments, were modelled as a function of watering treatment and environmental conditions at the seed source locations (i.e. water availability, precipitation seasonality). Key Results We found that, under all treatments, seedlings from more arid climates had larger above- and below-ground biomass compared to seedlings from sites experiencing lower growing-season water limitation, even after accounting for differences in seed size. Additionally, trait plasticity in response to watering treatments was greatest for seedlings from summer-wet sites that experience periodic monsoonal rain events. Conclusions Our results show that P. monophylla seedlings respond to drought through plasticity in multiple traits, but variation in trait responses suggests that different populations are likely to respond uniquely to changes in local climate. Such trait diversity will probably influence the potential for future seedling recruitment in woodlands that are projected to experience extensive drought-related tree mortality. 
    more » « less
  5. Abstract

    Increasingly severe and prolonged droughts are contributing to tree stress and forest mortality across western North America. However, in many cases, we currently have poor information concerning how drought responses in forests vary in relation to competition, climate, and site and tree characteristics. We used annual tree ring evidence of13C discrimination (Δ13C) and growth metrics to assess drought resistance and resilience for six conifer species at the intersection of several bioregions in northern California. Within each species' range in northern California, we collected competition and tree characteristics from 270 focal trees across sites that varied from wetter to drier habitat conditions (54 sites). Across sites, all six conifer species weathered the severe 2013–2015 drought with reasonably high resistance and post‐drought resilience. However, we found important differences in drought responses between coastal and montane species based on annual growth and Δ13C metrics. Broadly, the two coastal species showed consistent declines in drought resistance across successive drought years, whereas the four montane species maintained high drought resistance across drought years. More specifically, we found lower Δ13C and growth during drought years in coastal species, suggesting stomatal closure during drought with the potential for vulnerability to carbon depletion during long‐term drought. Conversely, Δ13C and growth were stable in montane species throughout the drought, which may contribute to hydraulic failure under increased drought frequency and/or severity. We also evaluated environmental factors that affect Δ13C using data from before and during the drought. These physiological models were consistent for the two coastal species, with a positive relationship between annual precipitation and Δ13C and a negative relationship between tree density and Δ13C. Conversely, the four montane models illustrated a greater importance of site conditions on drought responses for these species. Our findings show differential risk for drought stress across diverse conifers during severe drought. This work highlights the importance of site and tree characteristics in determining drought responses across cool, annually humid coastal habitats to seasonally dry montane habitats.

     
    more » « less