- Award ID(s):
- 2015425
- PAR ID:
- 10249952
- Date Published:
- Journal Name:
- Canadian Mathematical Bulletin
- Volume:
- 64
- Issue:
- 1
- ISSN:
- 0008-4395
- Page Range / eLocation ID:
- 13 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Gørtz, Inge Li ; Farach-Colton, Martin ; Puglisi, Simon J ; Herman, Grzegorz (Ed.)The min-diameter of a directed graph G is a measure of the largest distance between nodes. It is equal to the maximum min-distance d_{min}(u,v) across all pairs u,v ∈ V(G), where d_{min}(u,v) = min(d(u,v), d(v,u)). Min-diameter approximation in directed graphs has attracted attention recently as an offshoot of the classical and well-studied diameter approximation problem. Our work provides a 3/2-approximation algorithm for min-diameter in DAGs running in time O(m^{1.426} n^{0.288}), and a faster almost-3/2-approximation variant which runs in time O(m^{0.713} n). (An almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor of α plus constant additive error.) This is the first known algorithm to solve 3/2-approximation for min-diameter in sparse DAGs in truly subquadratic time O(m^{2-ε}) for ε > 0; previously only a 2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016], a better than 3/2-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time. Our work also presents the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic time, and that in general graphs, an approximation within a factor below 5/2 is similarly out of reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime Õ(min(m^{4/3} n^{1/3}, m^{1/2} n^{3/2})).more » « less
-
Let $D$ be a simple digraph (directed graph) with vertex set $V(D)$ and arc set $A(D)$ where $n=|V(D)|$, and each arc is an ordered pair of distinct vertices. If $(v,u) \in A(D)$, then $u$ is considered an \emph{out-neighbor} of $v$ in $D$. Initially, we designate each vertex to be either filled or empty. Then, the following color change rule (CCR) is applied: if a filled vertex $v$ has exactly one empty out-neighbor $u$, then $u$ will be filled. If all vertices in $V(D)$ are eventually filled under repeated applications of the CCR, then the initial set is called a \emph{zero forcing set} (ZFS); if not, it is a \emph{failed zero forcing set} (FZFS). We introduce the \emph{failed zero forcing number} $\F(D)$ on a digraph, which is the maximum cardinality of any FZFS. The \emph{zero forcing number}, $\Z(D)$, is the minimum cardinality of any ZFS. We characterize digraphs that have $\F(D)<\Z(D)$ and determine $\F(D)$ for several classes of digraphs including de Bruijn and Kautz digraphs. We also characterize digraphs with $\F(D)=n-1$, $\F(D)=n-2$, and $\F(D)=0$, which leads to a characterization of digraphs in which any vertex is a ZFS. Finally, we show that for any integer $n \geq 3$ and any non-negative integer $k$ with $k
more » « less We show that the square Hellinger distance between two Bayesian networks on the same directed graph, G, is subadditive with respect to the neighborhoods of G. Namely, if P and Q are the probability distributions defined by two Bayesian networks on the same DAG, our inequality states that the square Hellinger distance, H2(P,Q), between P and Q is upper bounded by the sum, ∑vH2(P{v}∪Πv,Q{v}∪Πv), of the square Hellinger distances between the marginals of P and Q on every node v and its parents Πv in the DAG. Importantly, our bound does not involve the conditionals but the marginals of P and Q. We derive a similar inequality for more general Markov Random Fields. As an application of our inequality, we show that distinguishing whether two Bayesian networks P and Q on the same (but potentially unknown) DAG satisfy P=Q vs dTV(P,Q)>ϵ can be performed from Õ (|Σ|3/4(d+1)⋅n/ϵ2) samples, where d is the maximum in-degree of the DAG and Σ the domain of each variable of the Bayesian networks. If P and Q are defined on potentially different and potentially unknown trees, the sample complexity becomes Õ (|Σ|4.5n/ϵ2), whose dependence on n,ϵ is optimal up to logarithmic factors. Lastly, if P and Q are product distributions over {0,1}n and Q is known, the sample complexity becomes O(n‾√/ϵ2), which is optimal up to constant factors.more » « lessnull (Ed.)Abstract We show how to construct a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner over a set $${P}$$ P of n points in $${\mathbb {R}}^d$$ R d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $${\vartheta },\varepsilon \in (0,1)$$ ϑ , ε ∈ ( 0 , 1 ) , the computed spanner $${G}$$ G has $$\begin{aligned} {{\mathcal {O}}}\bigl (\varepsilon ^{-O(d)} {\vartheta }^{-6} n(\log \log n)^6 \log n \bigr ) \end{aligned}$$ O ( ε - O ( d ) ϑ - 6 n ( log log n ) 6 log n ) edges. Furthermore, for any k , and any deleted set $${{B}}\subseteq {P}$$ B ⊆ P of k points, the residual graph $${G}\setminus {{B}}$$ G \ B is a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner for all the points of $${P}$$ P except for $$(1+{\vartheta })k$$ ( 1 + ϑ ) k of them. No previous constructions, beyond the trivial clique with $${{\mathcal {O}}}(n^2)$$ O ( n 2 ) edges, were known with this resilience property (i.e., only a tiny additional fraction of vertices, $$\vartheta |B|$$ ϑ | B | , lose their distance preserving connectivity). Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black-box fashion.more » « lessGiven a simple graph $G$, the irregularity strength of $G$, denoted $s(G)$, is the least positive integer $k$ such that there is a weight assignment on edges $f: E(G) \to \{1,2,\dots, k\}$ for which each vertex weight $f^V(v):= \sum_{u: \{u,v\}\in E(G)} f(\{u,v\})$ is unique amongst all $v\in V(G)$. In 1987, Faudree and Lehel conjectured that there is a constant $c$ such that $s(G) \leq n/d + c$ for all $d$-regular graphs $G$ on $n$ vertices with $d>1$, whereas it is trivial that $s(G) \geq n/d$. In this short note we prove that the Faudree-Lehel Conjecture holds when $d \geq n^{0.8+\epsilon}$ for any fixed $\epsilon >0$, with a small additive constant $c=28$ for $n$ large enough. Furthermore, we confirm the conjecture asymptotically by proving that for any fixed $\beta\in(0,1/4)$ there is a constant $C$ such that for all $d$-regular graphs $G$, $s(G) \leq \frac{n}{d}(1+\frac{C}{d^{\beta}})+28$, extending and improving a recent result of Przybyło that $s(G) \leq \frac{n}{d}(1+ \frac{1}{\ln^{\epsilon/19}n})$ whenever $d\in [\ln^{1+\epsilon} n, n/\ln^{\epsilon}n]$ and $n$ is large enough.