skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unifying AoI Minimization and Remote Estimation — Optimal Sensor/Controller Coordination with Random Two-way Delay
The ubiquitous usage of communication networks in modern sensing and control applications has kindled new interests on the timing-based coordination between sensors and controllers, i.e., how to use the “waiting time” to improve the system performance. Contrary to the common belief that a zero-wait policy is always optimal, Sun et al. showed that a controller can strictly improve the data freshness, the so-called Age-of-Information (AoI), by postponing transmission in order to lengthen the duration of staying in a good state. The optimal waiting policy for the sensor side was later characterized in the context of remote estimation. Instead of focusing on the sensor and controller sides separately, this work develops the optimal joint sensor/controller waiting policy in a Wiener-process system. The results can be viewed as strict generalization of the above two important results in the sense that not only do we consider joint sensor/controller designs (as opposed to sensor-only or controller only schemes), but we also assume random delay in both the forward and feedback directions (as opposed to random delay in only one direction). In addition to provable optimality, extensive simulation is used to verify the performance of the proposed scheme in various settings.  more » « less
Award ID(s):
2008527 1816013
PAR ID:
10249958
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Computer Communications (INFOCOM)
Page Range / eLocation ID:
466 to 475
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ever-increasing needs of supporting real-time applications have spurred a considerable number of studies on minimizing Age-of-Information (AoI), a new metric characterizing the data freshness of the system. This work revisits and significantly strengthens the seminal results of Sun et al. on the following fronts: (i) The optimal waiting policy is generalized from the 1-way delay to the 2-way delay setting; (ii) A new way of computing the optimal policy with quadratic convergence rate, an order-of-magnitude improvement over the state-of-the-art bisection methods; and (iii) A new low-complexity adaptive online algorithm that provably converges to the optimal policy without knowing the exact delay distribution, a sharp departure from the existing AoI algorithms. Contribution (iii) is especially important in practice since the delay distribution can sometimes be hard to know in advance and may change over time. Simulation results in various settings are consistent with the theoretic findings. 
    more » « less
  2. In networked control systems, the sensory signals are often quantized before being transmitted to the controller. Consequently, performance is affected by the coarseness of this quantization process. Modern communication technologies allow users to obtain resolution-varying quantized measurements based on the prices paid. In this paper, we consider the problem of joint optimal controller synthesis and quantizer scheduling for a partially observed quantized-feedback linear-quadratic-Gaussian system, where the measurements are quantized before being sent to the controller. The system is presented with several choices of quantizers, along with the cost of using each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike an optimal balance between control performance and quantization cost. When the innovation signal is quantized instead of the measurement, the problem is decoupled into two optimization problems: one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal controller is found by solving a Riccati equation and the optimal quantizer-selection policy is found by solving a linear program---both of which can be solved offline. 
    more » « less
  3. We study the design of a goal-oriented sampling and scheduling strategy through a channel with highly variable two-way random delay, which can exhibit memory (e.g., Delay and Disruption Tolerant Networks). The objective of the communication is to optimize the performance of remote inference, where an inference algorithm (e.g., a trained neural network) on the receiver side predicts a time-varying target signal using the data samples transmitted by a sensor. Previous formulations to this problem either assumed a channel with IID transmission delay, neglecting feedback delay or considered the monotonic relation that the performance only gets worse as the input information ages. We show how, with delayed feedback, one can effectively exploit the knowledge about delay memory through an index-based threshold policy. This policy minimizes the expected time-average inference error that can be monotone or non-monotone in age. The index function is expressed in terms of the Age of Information (AoI) on the receiver side and a parameter regarding the distribution of subsequent transmission delay, both of which can readily be tracked. 
    more » « less
  4. We consider an energy harvesting sensor transmit- ting latency-sensitive data over a fading channel. We aim to find the optimal transmission scheduling policy that minimizes the packet queuing delay given the available harvested energy. We formulate the problem as a Markov decision process (MDP) over a state-space spanned by the transmitter's buffer, battery, and channel states, and analyze the structural properties of the resulting optimal value function, which quantifies the long-run performance of the optimal scheduling policy. We show that the optimal value function (i) is non- decreasing and has increasing differences in the queue backlog; (ii) is non-increasing and has increasing differences in the battery state; and (iii) is submodular in the buffer and battery states. Our numerical results confirm these properties and demonstrate that the optimal scheduling policy outperforms a so-called greedy policy in terms of sensor outages, buffer overflows, energy efficiency, and queuing delay. 
    more » « less
  5. We study optimal pricing in a single server queue when the customers valuation of service depends on their waiting time. In particular, we consider a very general model, where the customer valuations are random and are sampled from a distribution that depends on the queue length. The goal of the service provider is to set dynamic state dependent prices in order to maximize its revenue, while also managing congestion. We model the problem as a Markov decision process and present structural results on the optimal policy. We also present an algorithm to find an approximate optimal policy. We further present a myopic policy that is easy to evaluate and present bounds on its performance. We finally illustrate the quality of our approximate solution and the myopic solution using numerical simulations. 
    more » « less