In this paper, we consider the verification of approximate infinite-step opacity for discrete-time control sys-tems. Relying on finite abstraction techniques for solving this problem requires discretization of the state and input sets, which requires significant computational resources. Here, we propose a discretization-free approach in which we formulate opacity as a safety property over an appropriately constructed augmented system, and seek to verify it by finding suitable barrier certificates. Within our proposed scheme, lack of opacity is also verified by posing it as a reachability property over the augmented system. The main result of this paper offers a discretization-free approach to verify (lack of) infinite-step opacity in discrete-time control systems. We also discuss other notions of opacity, and their relations to one another. We particularly study the conditions under which verifying one form of opacity for a system also implies other forms. Finally, we illustrate our theoretical results on two numerical examples, where we utilize sum-of-squares programming to search for polynomial barrier certificates. In these examples, we verify the infinite-step, and current-step opacity for a vehicle by checking whether its position is concealed from possible outside intruders.
more »
« less
LQG Reference Tracking with Safety and Reachability Guarantees under False Data Injection Attacks
Control systems are increasingly targeted by malicious adversaries, who may inject spurious sensor measurements in order to bias the controller behavior and cause suboptimal performance or safety violations. This paper investigates the problem of tracking a reference trajectory while satisfying safety and reachability constraints in the presence of such false data injection attacks. We consider a linear, time-invariant system with additive Gaussian noise in which a subset of sensors can be compromised by an attacker, while the remaining sensors are regarded as secure. We propose a control policy in which two estimates of the system state are maintained, one based on all sensors and one based on only the secure sensors. The optimal control action based on the secure sensors alone is then computed at each time step, and the chosen control action is constrained to lie within a given distance of this value. We show that this policy can be implemented by solving a quadraticallyconstrained quadratic program at each time step. We develop a barrier function approach to choosing the parameters of our scheme in order to provide provable guarantees on safety and reachability, and derive bounds on the probability that our control policies deviate from the optimal policy when no attacker is present. Our framework is validated through numerical study.
more »
« less
- Award ID(s):
- 1656981
- PAR ID:
- 10131733
- Date Published:
- Journal Name:
- American Control Conference (ACC)
- Page Range / eLocation ID:
- 2950-2957
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The combination of connectivity and automation allows connected and autonomous vehicles (CAVs) to operate autonomously using advanced on-board sensors while communicating with each other via vehicle-to-vehicle (V2V) technology to enhance safety, efficiency, and mobility. One of the most promising features of CAVs is cooperative adaptive cruise control (CACC). This system extends the capabilities of conventional adaptive cruise control (ACC) by facilitating the exchange of critical parameters among vehicles to enhance safety, traffic flow, and efficiency. However, increased connectivity introduces new vulnerabilities, making CACC susceptible to cyber-attacks, including false data injection (FDI) attacks, which can compromise vehicle safety. To address this challenge, we propose a secure observer-based control design leveraging Lyapunov stability analysis, which is capable of mitigating the adverse impact of FDI attacks and ensuring system safety. This approach uniquely addresses system security without relying on a known lead vehicle model. The developed approach is validated through simulation results, demonstrating its effectiveness.more » « less
-
In this work, we propose a trajectory generation method for robotic systems with contact force constraint based on optimal control and reachability analysis. Normally, the dynamics and constraints of the contact-constrained robot are nonlinear and coupled to each other. Instead of linearizing the model and constraints, we directly solve the optimal control problem to obtain the feasible state trajectory and the control input of the system. A tractable optimal control problem is formulated which is addressed by dual approaches, which are sampling-based dynamic programming and rigorous reachability analysis. The sampling-based method and Partially Observable Markov Decision Process (POMDP) are used to break down the end-to-end trajectory generation problem via sample-wise optimization in terms of given conditions. The result generates sequential pairs of subregions to be passed to reach the final goal. The reachability analysis ensures that we will find at least one trajectory starting from a given initial state and going through a sequence of subregions. The distinctive contributions of our method are to enable handling the intricate contact constraint coupled with system’s dynamics due to the reduction of computational complexity of the algorithm. We validate our method using extensive numerical simulations with a legged robot.more » « less
-
Employing mobile actuators and sensors for control and estimation of spatially distributed processes offers a significant advantage over immobile actuators and sensors. In addition to the control performance improvement, one also comes across the economic advantages since fewer devices, if allowed to be repositioned within a spatial domain, must be employed. While simulation studies of mobile actuators report superb controller performance, they are far from reality as the mechanical constraints of the mobile platforms carrying actuators and sensors have to satisfy motional constraints. Terrain platforms cannot behave as point masses without inertia; instead they must satisfy constraints which are adequately represented as path-dependent reachability sets. When the control algorithm commands a mobile platform to reposition itself in a different spatial location within the spatial domain, this does not occur instantaneously and for the most part the motion is not omnidirectional. This constraint is combined with a computationally feasible and suboptimal control policy with mobile actuators to arrive at a numerically viable control and guidance scheme. The feasible control decision comes from a continuous-discrete control policy whereby the mobile platform carrying the actuator is repositioned at discrete times and dwells in a specific position for a certain time interval. Moving to a subsequent spatial location and computing its associated path over a physics-imposed time interval, a set of candidate positions and paths is derived using a path-dependent reachability set. Embedded into the path-dependent reachability sets that dictate the mobile actuator repositioning, a scheme is proposed to integrate collocated sensing measurements in order to minimize costly state estimation schemes. The proposed scheme is demonstrated with a 2D PDE having two sets of collocated actuator-sensor pairs onboard mobile platforms.more » « less
-
The secure functioning of automotive systems is vital to the safety of their passengers and other roadway users. One of the critical functions for safety is the controller area network (CAN), which interconnects the safety-critical electronic control units (ECUs) in the majority of ground vehicles. Unfortunately CAN is known to be vulnerable to several attacks. One such attack is the bus-off attack, which can be used to cause a victim ECU to disconnect itself from the CAN bus and, subsequently, for an attacker to masquerade as that ECU. A limitation of the bus-off attack is that it requires the attacker to achieve tight synchronization between the transmission of the victim and the attacker’s injected message. In this paper, we introduce a schedule-based attack framework for the CAN bus-off attack that uses the real-time schedule of the CAN bus to predict more attack opportunities than previously known. We describe a ranking method for an attacker to select and optimize its attack injections with respect to criteria such as attack success rate, bus perturbation, or attack latency. The results show that vulnerabilities of the CAN bus can be enhanced by schedulebased attacks.more » « less
An official website of the United States government

