skip to main content

Title: Tetrairon( ii ) extended metal atom chains as single-molecule magnets
Iron-based extended metal atom chains (EMACs) are potentially high-spin molecules with axial magnetic anisotropy and thus candidate single-molecule magnets (SMMs). We herein compare the tetrairon( ii ), halide-capped complexes [Fe 4 (tpda) 3 Cl 2 ] ( 1Cl ) and [Fe 4 (tpda) 3 Br 2 ] ( 1Br ), obtained by reacting iron( ii ) dihalides with [Fe 2 (Mes) 4 ] and N 2 , N 6 -di(pyridin-2-yl)pyridine-2,6-diamine (H 2 tpda) in toluene, under strictly anhydrous and anaerobic conditions (HMes = mesitylene). Detailed structural, electrochemical and Mössbauer data are presented along with direct-current (DC) and alternating-current (AC) magnetic characterizations. DC measurements revealed similar static magnetic properties for the two derivatives, with χ M T at room temperature above that for independent spin carriers, but much lower at low temperature. The electronic structure of the iron( ii ) ions in each derivative was explored by ab initio (CASSCF-NEVPT2-SO) calculations, which showed that the main magnetic axis of all metals is directed close to the axis of the chain. The outer metals, Fe1 and Fe4, have an easy-axis magnetic anisotropy ( D = −11 to −19 cm −1 , | E / D | = 0.05–0.18), while the internal metals, more » Fe2 and Fe3, possess weaker hard-axis anisotropy ( D = 8–10 cm −1 , | E / D | = 0.06–0.21). These single-ion parameters were held constant in the fitting of DC magnetic data, which revealed ferromagnetic Fe1–Fe2 and Fe3–Fe4 interactions and antiferromagnetic Fe2–Fe3 coupling. The competition between super-exchange interactions and the large, noncollinear anisotropies at metal sites results in a weakly magnetic non-Kramers doublet ground state. This explains the SMM behavior displayed by both derivatives in the AC susceptibility data, with slow magnetic relaxation in 1Br being observable even in zero static field. « less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Dalton Transactions
Page Range or eLocation-ID:
7571 to 7589
Sponsoring Org:
National Science Foundation
More Like this
  1. Three mononuclear tetrakis(pseudohalido)-cobalt( ii ) complexes (Ph 4 P) 2 [Co(E) 4 ] (E = N 3 − , 1; NCO − , 2; NCS − , 3) have been synthesized and structurally characterized. Each compound contains a distorted tetrahedral Co 2+ ion coordinated by four pseudohalide ligands. The magnetic properties of 1–3 have been studied using direct-current magnetic measurements and high-frequency and -field EPR spectroscopy (HFEPR), suggesting easy-axis magnetic anisotropy for 1 and 2 and easy-plane anisotropy for 3. Analysis of the HFEPR spectra yielded D values of −5.23 and +3.63 cm −1 for 2 and 3, respectively. The absence of the EPR signal in 1 is consistent with a large, negative value of the zero-field splitting (ZFS) parameter D in 1. The nature of magnetic anisotropies of 1–3 has also been confirmed by ab initio calculations. The calculated D values are consistent with those determined using magnetometry and HFEPR studies. Alternating current (AC) magnetic susceptibilities reveal slow magnetic relaxation under an applied magnetic field, thus indicating that 1–3 are field-induced single-ion magnets (SIMs).
  2. Reaction of FeBr 2 with 1.5 equiv. of LiNCPh 2 and 2 equiv. of Zn, in THF, results in the formation of the tetrametallic iron ketimide cluster [Fe 4 (NCPh 2 ) 6 ] ( 1 ) in moderate yield. Formally, two Fe centers in 1 are Fe( i ) and two are Fe( ii ); however, Mössbauer spectroscopy and SQUID magnetometry suggests that the [Fe 4 ] 6+ core of 1 exhibits complete valence electron delocalization, with a thermally-persistent spin ground state of S = 7. AC and DC SQUID magnetometry reveals the presence of slow magnetic relaxation in 1 , indicative of single-molecule magnetic (SMM) behaviour with a relaxation barrier of U eff = 29 cm −1 . Remarkably, very little quantum tunnelling or Raman relaxation is observed down to 1.8 K, which leads to an open hysteresis loop and long relaxation times (up to 34 s at 1.8 K and zero field and 440 s at 1.67 kOe). These results suggest that transition metal ketimide clusters represent a promising avenue to create long-lifetime single molecule magnets.
  3. Experimental and theoretical studies of magnetic anisotropy and relaxation behavior of six-coordinate tris(pivalato)-Co( ii ) and -Ni( ii ) complexes (NBu 4 )[M(piv) 3 ] (piv = pivalate, M = Co, 1 ; M = Ni, 2 ), with a coordination configuration at the intermediate between an octahedron and a trigonal prism, are reported. Direct current magnetic data and high-frequency and -field EPR spectra (HFEPR) of 1 have been modeled by a general Hamiltonian considering the first-order orbital angular momentum, while the spin Hamiltonian was used to interpret the data of 2 . Both 1 and 2 show easy-axis magnetic anisotropies, which are further supported by ab initio calculations. Alternating current (ac) magnetic susceptibilities reveal slow magnetic relaxation at an applied dc field of 0.1 T in 1 , which is characteristic of a field-induced single-ion magnet (SIM), but 2 does not exhibit single-ion magnetic properties at 1.8 K. Detailed analyses of relaxation times show a dominant contribution of a Raman process for spin relaxation in 1 .
  4. The combined experimental and theoretical investigation of the magnetic properties of the cobalt( ii ) NHC complexes (NHC = N-heterocyclic carbene); [Co(CH 2 SiMe 3 ) 2 (IPr)] ( 1 ), [CoCl 2 (IMes) 2 ] ( 2 ) and [Co(CH 3 ) 2 (IMes) 2 ] ( 3 ) revealed a large easy plane anisotropy for 1 ( D = +73.7 cm −1 ) and a moderate easy axis anisotropy for 2 ( D = −7.7 cm −1 ) due to significant out-of-state spin–orbit coupling. Dynamic magnetic measurements revealed slow relaxation of the magnetization for 1 ( U eff = 22.5 K, τ 0 = 3 × 10 −7 s, 1000 Oe) and for 2 ( U eff = 20.2 K, τ 0 = 1.73 × 10 −8 s, 1500 Oe). The molecular origin of the slow relaxation phenomena was further supported by the retention of AC signal in 10% solutions in 2-MeTHF which reveals a second zero field AC signal in 1 at higher frequencies. Compound 3 was found to be an S = 1/2 system.
  5. Recently, the choice of ligand and geometric control of mononuclear complexes, which can affect the relaxation pathways and blocking temperature, have received wide attention in the field of single-ion magnets (SIMs). To find out the influence of the coordination environment on SIMs, two four-coordinate mononuclear Co( ii ) complexes [NEt 4 ][Co(PPh 3 )X 3 ] (X = Cl − , 1; Br − , 2) have been synthesized and studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes are in a cubic space group Pa 3̄ (No. 205), containing a slightly distorted tetrahedral moiety with crystallographically imposed C 3 v symmetry through the [Co(PPh 3 )X 3 ] − anion. The direct-current (dc) magnetic data and HF-EPR spectroscopy indicated the anisotropic S = 3/2 spin ground states of the Co( ii ) ions with the easy-plane anisotropy for 1 and 2. Ab initio calculations were performed to confirm the positive magnetic anisotropies of 1 and 2. Frequency- and temperature-dependent alternating-current (ac) magnetic susceptibility measurements revealed slow magnetic relaxation for 1 and 2 at an applied dc field. Finally, the magnetic properties of 1 and 2 were compared to those ofmore »other Co( ii ) complexes with a [CoAB 3 ] moiety.« less