skip to main content


Title: Magnetic anisotropies and slow magnetic relaxation of three tetrahedral tetrakis(pseudohalido)–cobalt( ii ) complexes
Three mononuclear tetrakis(pseudohalido)-cobalt( ii ) complexes (Ph 4 P) 2 [Co(E) 4 ] (E = N 3 − , 1; NCO − , 2; NCS − , 3) have been synthesized and structurally characterized. Each compound contains a distorted tetrahedral Co 2+ ion coordinated by four pseudohalide ligands. The magnetic properties of 1–3 have been studied using direct-current magnetic measurements and high-frequency and -field EPR spectroscopy (HFEPR), suggesting easy-axis magnetic anisotropy for 1 and 2 and easy-plane anisotropy for 3. Analysis of the HFEPR spectra yielded D values of −5.23 and +3.63 cm −1 for 2 and 3, respectively. The absence of the EPR signal in 1 is consistent with a large, negative value of the zero-field splitting (ZFS) parameter D in 1. The nature of magnetic anisotropies of 1–3 has also been confirmed by ab initio calculations. The calculated D values are consistent with those determined using magnetometry and HFEPR studies. Alternating current (AC) magnetic susceptibilities reveal slow magnetic relaxation under an applied magnetic field, thus indicating that 1–3 are field-induced single-ion magnets (SIMs).  more » « less
Award ID(s):
2055499
NSF-PAR ID:
10339833
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
45
Issue:
36
ISSN:
1144-0546
Page Range / eLocation ID:
16852 to 16861
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Experimental and theoretical studies of magnetic anisotropy and relaxation behavior of six-coordinate tris(pivalato)-Co( ii ) and -Ni( ii ) complexes (NBu 4 )[M(piv) 3 ] (piv = pivalate, M = Co, 1 ; M = Ni, 2 ), with a coordination configuration at the intermediate between an octahedron and a trigonal prism, are reported. Direct current magnetic data and high-frequency and -field EPR spectra (HFEPR) of 1 have been modeled by a general Hamiltonian considering the first-order orbital angular momentum, while the spin Hamiltonian was used to interpret the data of 2 . Both 1 and 2 show easy-axis magnetic anisotropies, which are further supported by ab initio calculations. Alternating current (ac) magnetic susceptibilities reveal slow magnetic relaxation at an applied dc field of 0.1 T in 1 , which is characteristic of a field-induced single-ion magnet (SIM), but 2 does not exhibit single-ion magnetic properties at 1.8 K. Detailed analyses of relaxation times show a dominant contribution of a Raman process for spin relaxation in 1 . 
    more » « less
  2. Three mononuclear six-coordinate Co( ii )-pseudohalide complexes [Co(L)X 2 ] with two N-donor pseudohalido coligands occupying the cis -positions (X = NCS − ( 1 ), NCSe − ( 2 ) or N(CN) 2 − ( 3 )), and a five-coordinate complex [Co(L)(NCO)][B(C 6 H 5 ) 4 ] ( 4 ) [L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC)] have been prepared and structurally characterized. Easy-plane magnetic anisotropy for 1–3 and easy-axis anisotropy for 4 were revealed via the analyses of the direct-current magnetic data, high-frequency and -field EPR (HFEPR) spectra and ab initio theoretical calculations. They display slow magnetic relaxations under an external applied dc field. Typically, two slow relaxation processes were found in 1 and 2 while only one relaxation process occurs in 3 and 4 . The Raman-like mechanism is found to be dominant in the studied temperature range in 1 . For 2–4 , the Raman process is dominant in the low temperature region, while the Orbach mechanism dominates in the high temperature range. 
    more » « less
  3. null (Ed.)
    Two five-coordinate mononuclear Co( ii ) complexes [Co(12-TMC)X][B(C 6 H 5 ) 4 ] (L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC), X = Cl − ( 1 ), Br − ( 2 )) have been studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes have a distorted square pyramidal geometry with the Co( ii ) ion lying above the basal plane constrained by the rigid tetradentate macrocyclic ligand. In contrast to the reported five-coordinate Co( ii ) complex [Co(12-TMC)(NCO)][B(C 6 H 5 ) 4 ] ( 3 ) exhibiting easy-axis anisotropy, an easy-plane magnetic anisotropy was found for 1 and 2 via the analyses of the direct-current magnetic data and HF-EPR spectroscopy. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements demonstrated that complexes 1 and 2 show slow magnetic relaxation at an applied dc field. Ab initio calculations were performed to reveal the impact of the terminal ligands on the nature of the magnetic anisotropies of this series of five-coordinate Co( ii ) complexes. 
    more » « less
  4. Recently, the choice of ligand and geometric control of mononuclear complexes, which can affect the relaxation pathways and blocking temperature, have received wide attention in the field of single-ion magnets (SIMs). To find out the influence of the coordination environment on SIMs, two four-coordinate mononuclear Co( ii ) complexes [NEt 4 ][Co(PPh 3 )X 3 ] (X = Cl − , 1; Br − , 2) have been synthesized and studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes are in a cubic space group Pa 3̄ (No. 205), containing a slightly distorted tetrahedral moiety with crystallographically imposed C 3 v symmetry through the [Co(PPh 3 )X 3 ] − anion. The direct-current (dc) magnetic data and HF-EPR spectroscopy indicated the anisotropic S = 3/2 spin ground states of the Co( ii ) ions with the easy-plane anisotropy for 1 and 2. Ab initio calculations were performed to confirm the positive magnetic anisotropies of 1 and 2. Frequency- and temperature-dependent alternating-current (ac) magnetic susceptibility measurements revealed slow magnetic relaxation for 1 and 2 at an applied dc field. Finally, the magnetic properties of 1 and 2 were compared to those of other Co( ii ) complexes with a [CoAB 3 ] moiety. 
    more » « less
  5. Abstract

    Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single‐molecule magnets (SMMs). Spin‐phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin‐phonon coupling in molecules is challenging. We have found that far‐IR magnetic spectra (FIRMS) of Co(PPh3)2X2(Co‐X; X=Cl, Br, I) reveal rarely observed spin‐phonon coupling as avoided crossings between magnetic andu‐symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero‐field split (ZFS) levels of theS=3/2 electronic ground state were probed by INS, high‐frequency and ‐field EPR (HFEPR), FIRMS, and frequency‐domain FT terahertz EPR (FD‐FT THz‐EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) andgvalues. Ligand‐field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities inCo‐X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin‐phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.

     
    more » « less