skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wild Bornean orangutans experience muscle catabolism during episodes of fruit scarcity
Abstract Pronounced temporal and spatial variation in the availability of food resources can produce energetic deficits in organisms. Fruit-dependent Bornean orangutans face extreme variation in fruit availability and experience negative energy and protein balance during episodes of fruit scarcity. We evaluate the possibility that orangutans of different sexes and ages catabolize muscle tissue when the availability of fruit is low. We assess variation in muscle mass by examining the relationship between urinary creatinine and specific gravity and use the residuals as a non-invasive measure of estimated lean body mass (ELBM). Despite orangutans having a suite of adaptations to buffer them from fruit scarcity and associated caloric deficits, ELBM was lower during low fruit periods in all age-sex classes. As predicted, adult male orangutans had higher ELBM than adult females and immatures. Contrary to expectation, flanged and unflanged males did not differ significantly in ELBM. These findings highlight the precarity of orangutan health in the face of rapid environmental change and add to a growing body of evidence that orangutans are characterized by unique metabolic traits shaped by their unpredictable forest environment.  more » « less
Award ID(s):
1719825
PAR ID:
10250053
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Bornean orangutans' extended life history may be an adaptation to their forest habitat, characterized by dramatically fluctuating fruit availability. We hypothesize that juveniles rest and are carried more when fruit availability is low, spending less time in developmentally important behavior including play and independent travel to conserve energy. We test this using generalized linear mixed models and data derived from 976 follows of infant and juvenile orangutans collected during periods of varying fruit availability. Age (p<0.001), but not fruit availability (p>0.05) significantly affected offsprings’ time being carried (β=-8,1) and resting (β=-2.6, p<0.001). Younger individuals spent more time clinging and resting regardless of fruit availability. Fruit availability and offspring age interact to affect the proportion of time juveniles play (β=1.5, p<0.001) and travel (β=-0.8, p<0.001). Fruit availability impacts younger juveniles’ play behavior more dramatically than older juveniles: younger juveniles play more when fruit availability is high than when it is low, while older juveniles exhibit little variation in time spent playing depending on fruit availability. Juveniles aged 6-8 travel more when fruit availability is medium and high, juveniles aged 2-5 travel slightly less when fruit availability is high, and juveniles under 2 rarely travel independently. We also examined relationships between fruit availability, offspring age, and maternal travel distance using 2065 mother-offspring follows, demonstrating that females travel shorter distances with offspring under four, and when fruit availability is low. Thus, orangutans shift activity in response to fruit availability and throughout development, buffering young orangutans against energy depletion but suppressing developmentally important activities. Funders: NSF (9414388, BCS-1638823, BCS-0936199); National Geographic; USFish/Wildlife (F18AP00898, F15AP00812, F13AP00920, 96200-0-G249, 96200-9-G110); Leakey; Disney Conservation Fund; Wenner-Gren; Nacey-Maggioncalda; Conservation-Food-Health; Orangutan Conservancy; Woodland Park Zoo 
    more » « less
  2. Orangutan diets vary dramatically with food availability. Orangutans preferentially eat fruit when available, but due to dramatic and unpredictable fluctuations in fruit availability, orangutans often consume unripe fruit, bark, seeds, and leaves. Their robust craniodental structure suggests that they are well adapted to consume mechanically challenging foods. Since differences in jaw anatomy and body size pose physiological differences in terms of gape, exerted force, and resistance to wear and breakdown, growth and allometry likely affect an orangutan’s ability to process a mechanically challenging diet. Thus, we predict that orangutans of different ages and sexes process foods differently. Given juveniles' smaller and less powerful craniodental structure, and the time required to develop ecological competence, we hypothesized that juveniles may have more difficulty in processing foods than adults. We recorded the frequency that foods were introduced to the mouth, and chewed with different teeth (incisors, canines, and molars) in 561 feeding videos collected in Gunung Palung National Park in West Kalimantan, Borneo on wild orangutans (Pongo pygmaeus wurmbii). Videos were stratified by age and sex class and foods were categorized by type. Infants and juveniles use their canines significantly more frequently than adult females (p< 0.05) and flanged males (p< 0.05). Molar use also differed by age and sex class (F(3)=2.551, p=0.05), with juveniles chewing with their molars significantly more frequently than adult females (p=0.05). Differences in adult and juvenile oral processing profiles suggest juveniles may process some foods less efficiently than adults. 
    more » « less
  3. Bornean orangutans (Pongo pygmaeus wurmbii) preferentially eat pulp and mesocarp when fleshy fruit is abundant. However, during non-masting periods, orangutans rely on foods that can be mechanically challenging, including leaves, woody plant tissue, and seeds. Although adult orangutans’ jaws are well adapted for intense and, perhaps, repetitive loading during chewing, it may be easier for flanged adult males to process tough or hard foods than for adult females because of dramatic sexual dimorphism. Here, we use video data and in situ focalobservations from Gunung Palung National Park, West Kalimantan, Indonesia to test the hypotheses that orangutans exhibit food- and sex-specific oral processing profiles. Pilot data (n=94 feeding bouts; 76 adult females, 18 adult males) suggest no significant differences in use of incisors (F(3,71)=0.41, p=0.75), canines (F(3,71)=0.78, p=0.52), or molars (F(3,71)=0.88, p=0.46) per ingestive action while processing fruit, leaves, termites, or bark. Females used significantly more incisions per ingestive action (2.20) than males (1.01) (t=2.44, p=0.008), and, though differences were not significant, performed more canine bites (female mean=0.08, male mean=0.00, p=0.17) and mastications (female mean=4.88, male mean=3.95, p=0.24) per ingestive action than males. We detected no difference in the behaviors used by orangutans to process different food types, despite great variation in food mechanical properties. However, this may be because our pilot data did not capture the range of mechanical challenges in orangutan diets. Nevertheless, our preliminary results support the hypothesis that adult females work harder than flanged males during oral food processing, explicable due to sexual dimorphism. National Science Foundation (BCS-1638823, BCS-0936199); National Geographic Society; US Fish and Wildlife (F15AP00812, F12AP00369, 98210-8- G661); Leakey Foundation; Disney Wildlife Conservation Fund; Wenner-Gren Foundation; Nacey-Maggioncalda Foundation 
    more » « less
  4. null (Ed.)
    Bornean orangutans (Pongo pygmaeus wurmbii) are large bodied great apes that live in rainforests dominated by mast-fruiting dipterocarp trees with extreme fluctuations in fruit availability. Orangutans respond to this temporal and spatial variability in fruit production by ranging over large areas and adopting a semi-solitary social structure. Females have overlapping home ranges, engage in both scramble and contest competition for food, and actively avoid each other. Overlap requires individuals to share access to resources and adjust ranging to optimize energy intake, thus habitat quality likely influences ranging patterns. Here we investigate whether habitat and food availability are significant predictors of female orangutan home range overlap using data collected at Gunung Palung National Park, Indonesia, a site with 7 distinct habitats. Researchers collected GPS waypoints of orangutan movements during all day focal follows. Fruit availability was measured through monthly monitoring of over 6000 trees, across 60 plots. We used R to calculate range overlap per habitat between pairs of adult female orangutans over three-month periods (2013-2019). Our results show a trend towards a negative relationship between overlap and fruit availability (N=15, Pearson’s R= -0.322, p=0.242). We also found habitat to be a predictor of female range overlap, with overlap most likely to occur in the alluvial bench habitat and significantly less likely in the peat swamp (p<0.05). These findings reveal the independent influences of fruit availability and habitat type on female orangutan home range overlap, highlighting the potential importance of habitat-specific food availability on ranging behavior and contest competition. Funders: NSF (9414388, BCS-1638823, BCS-0936199); National Geographic; USFish/Wildlife (F18AP00898, F15AP00812, F13AP00920, 96200-0-G249, 96200-9-G110); Leakey; Disney Conservation Fund; Wenner-Gren; Nacey-Maggioncalda; Conservation-Food-Health; Orangutan Conservancy; Woodland Park Zoo; Boston University GRAF 
    more » « less
  5. The socioecological model predicts that food availability and risk of parasite transmission influence sociality in primates. As a semi-solitary ape inhabiting the masting forests of Southeast Asia, orangutans provide a unique opportunity to compare social and non-social periods and highly variable foraging conditions within one population. This study compared two data collection periods when fruit availability differed markedly to determine whether sociality and parasite prevalence decrease as expected during periods of fruit scarcity. Fecal samples were analyzed using direct smear and fecal concentration techniques on-site at Cabang Panti Research Station from 2013-2014 and 2018-2019. From the high fruit period to the low fruit period, sociality decreased from 54% of focal follows containing a social event to 29%, while overall parasite prevalence remained the same at 100%. Interesting differences arose for certain parasite species, however. Enterobius sp. prevalence decreased during the low fruit period for both sexes but even more so for males (50% to 29% for females; 56% to 0 for males). Prevalence of Trichuris sp. increased for females during the low fruit period (5% to 43%) while prevalence among males remained the same. These results lend support to the prediction that social contact influences transmission risk for some parasite species, while other parasites may be more responsive to factors such as changes in reproductive state. These findings suggest that differences in the behavioral strategies of the sexes and the differential energetic demands of life history stages have an influence on parasitic infection patterns. 
    more » « less