skip to main content


Title: Privacy Concerns for Visual Assistance Technologies
People who are blind share their images and videos with companies that provide visual assistance technologies (VATs) to gain access to information about their surroundings. A challenge is that people who are blind cannot independently validate the content of the images and videos before they share them, and their visual data commonly contains private content. We examine privacy concerns for blind people who share personal visual data with VAT companies that provide descriptions authored by humans or artifcial intelligence (AI) . We frst interviewed 18 people who are blind about their perceptions of privacy when using both types of VATs. Then we asked the participants to rate 21 types of image content according to their level of privacy concern if the information was shared knowingly versus unknowingly with human- or AI-powered VATs. Finally, we analyzed what information VAT companies communicate to users about their collection and processing of users’ personal visual data through their privacy policies. Our fndings have implications for the development of VATs that safeguard blind users’ visual privacy, and our methods may be useful for other camera-based technology companies and their users.  more » « less
Award ID(s):
2125925
NSF-PAR ID:
10350252
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Accessible Computing
Volume:
15
Issue:
2
ISSN:
1936-7228
Page Range / eLocation ID:
1 to 43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Social media has created opportunities for children to gather social support online (Blackwell et al., 2016; Gonzales, 2017; Jackson, Bailey, & Foucault Welles, 2018; Khasawneh, Rogers, Bertrand, Madathil, & Gramopadhye, 2019; Ponathil, Agnisarman, Khasawneh, Narasimha, & Madathil, 2017). However, social media also has the potential to expose children and adolescents to undesirable behaviors. Research showed that social media can be used to harass, discriminate (Fritz & Gonzales, 2018), dox (Wood, Rose, & Thompson, 2018), and socially disenfranchise children (Page, Wisniewski, Knijnenburg, & Namara, 2018). Other research proposes that social media use might be correlated to the significant increase in suicide rates and depressive symptoms among children and adolescents in the past ten years (Mitchell, Wells, Priebe, & Ybarra, 2014). Evidence based research suggests that suicidal and unwanted behaviors can be promulgated through social contagion effects, which model, normalize, and reinforce self-harming behavior (Hilton, 2017). These harmful behaviors and social contagion effects may occur more frequently through repetitive exposure and modelling via social media, especially when such content goes “viral” (Hilton, 2017). One example of viral self-harming behavior that has generated significant media attention is the Blue Whale Challenge (BWC). The hearsay about this challenge is that individuals at all ages are persuaded to participate in self-harm and eventually kill themselves (Mukhra, Baryah, Krishan, & Kanchan, 2017). Research is needed specifically concerning BWC ethical concerns, the effects the game may have on teenagers, and potential governmental interventions. To address this gap in the literature, the current study uses qualitative and content analysis research techniques to illustrate the risk of self-harm and suicide contagion through the portrayal of BWC on YouTube and Twitter Posts. The purpose of this study is to analyze the portrayal of BWC on YouTube and Twitter in order to identify the themes that are presented on YouTube and Twitter posts that share and discuss BWC. In addition, we want to explore to what extent are YouTube videos compliant with safe and effective suicide messaging guidelines proposed by the Suicide Prevention Resource Center (SPRC). Method Two social media websites were used to gather the data: 60 videos and 1,112 comments from YouTube and 150 posts from Twitter. The common themes of the YouTube videos, comments on those videos, and the Twitter posts were identified using grounded, thematic content analysis on the collected data (Padgett, 2001). Three codebooks were built, one for each type of data. The data for each site were analyzed, and the common themes were identified. A deductive coding analysis was conducted on the YouTube videos based on the nine SPRC safe and effective messaging guidelines (Suicide Prevention Resource Center, 2006). The analysis explored the number of videos that violated these guidelines and which guidelines were violated the most. The inter-rater reliabilities between the coders ranged from 0.61 – 0.81 based on Cohen’s kappa. Then the coders conducted consensus coding. Results & Findings Three common themes were identified among all the posts in the three social media platforms included in this study. The first theme included posts where social media users were trying to raise awareness and warning parents about this dangerous phenomenon in order to reduce the risk of any potential participation in BWC. This was the most common theme in the videos and posts. Additionally, the posts claimed that there are more than 100 people who have played BWC worldwide and provided detailed description of what each individual did while playing the game. These videos also described the tasks and different names of the game. Only few videos provided recommendations to teenagers who might be playing or thinking of playing the game and fewer videos mentioned that the provided statistics were not confirmed by reliable sources. The second theme included posts of people that either criticized the teenagers who participated in BWC or made fun of them for a couple of reasons: they agreed with the purpose of BWC of “cleaning the society of people with mental issues,” or they misunderstood why teenagers participate in these kind of challenges, such as thinking they mainly participate due to peer pressure or to “show off”. The last theme we identified was that most of these users tend to speak in detail about someone who already participated in BWC. These videos and posts provided information about their demographics and interviews with their parents or acquaintances, who also provide more details about the participant’s personal life. The evaluation of the videos based on the SPRC safe messaging guidelines showed that 37% of the YouTube videos met fewer than 3 of the 9 safe messaging guidelines. Around 50% of them met only 4 to 6 of the guidelines, while the remaining 13% met 7 or more of the guidelines. Discussion This study is the first to systematically investigate the quality, portrayal, and reach of BWC on social media. Based on our findings from the emerging themes and the evaluation of the SPRC safe messaging guidelines we suggest that these videos could contribute to the spread of these deadly challenges (or suicide in general since the game might be a hoax) instead of raising awareness. Our suggestion is parallel with similar studies conducted on the portrait of suicide in traditional media (Fekete & Macsai, 1990; Fekete & Schmidtke, 1995). Most posts on social media romanticized people who have died by following this challenge, and younger vulnerable teens may see the victims as role models, leading them to end their lives in the same way (Fekete & Schmidtke, 1995). The videos presented statistics about the number of suicides believed to be related to this challenge in a way that made suicide seem common (Cialdini, 2003). In addition, the videos presented extensive personal information about the people who have died by suicide while playing the BWC. These videos also provided detailed descriptions of the final task, including pictures of self-harm, material that may encourage vulnerable teens to consider ending their lives and provide them with methods on how to do so (Fekete & Macsai, 1990). On the other hand, these videos both failed to emphasize prevention by highlighting effective treatments for mental health problems and failed to encourage teenagers with mental health problems to seek help and providing information on where to find it. YouTube and Twitter are capable of influencing a large number of teenagers (Khasawneh, Ponathil, Firat Ozkan, & Chalil Madathil, 2018; Pater & Mynatt, 2017). We suggest that it is urgent to monitor social media posts related to BWC and similar self-harm challenges (e.g., the Momo Challenge). Additionally, the SPRC should properly educate social media users, particularly those with more influence (e.g., celebrities) on elements that boost negative contagion effects. While the veracity of these challenges is doubted by some, posting about the challenges in unsafe manners can contribute to contagion regardless of the challlenges’ true nature. 
    more » « less
  2. Massive amounts of data today are being generated from users engaging on social media. Despite knowing that whatever they post on social media can be viewed, downloaded and analyzed by unauthorized entities, a large number of people are still willing to compromise their privacy today. On the other hand though, this trend may change. Improved awareness on protecting content on social media, coupled with governments creating and enforcing data protection laws, mean that in the near future, users may become increasingly protective of what they share. Furthermore, new laws could limit what data social media companies can use without explicit consent from users. In this paper, we present and address a relatively new problem in privacy-preserved mining of social media logs. Specifically, the problem here is the feasibility of deriving the topology of network communications (i.e., match senders and receivers in a social network), but with only meta-data of conversational files that are shared by users, after anonymizing all identities and content. More explicitly, if users are willing to share only (a) whether a message was sent or received, (b) the temporal ordering of messages and (c) the length of each message (after anonymizing everything else, including usernames from their social media logs), how can the underlying topology of sender-receiver patterns be generated. To address this problem, we present a Dynamic Time Warping based solution that models the meta-data as a time series sequence. We present a formal algorithm and interesting results in multiple scenarios wherein users may or may not delete content arbitrarily before sharing. Our performance results are very favorable when applied in the context of Twitter. Towards the end of the paper, we also present interesting practical applications of our problem and solutions. To the best of our knowledge, the problem we address and the solution we propose are unique, and could provide important future perspectives on learning from privacy-preserving mining of social media logs. 
    more » « less
  3. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  4. In the United States, public defenders (lawyers assigned to people accused of crimes who cannot afford a private attorney) serve as an essential bulwark against wrongful arrest and incarceration for low-income and marginalized people. Public defenders have long been overworked and under-resourced. However, these issues have been compounded by increases in the volume and complexity of data in modern criminal cases. We explore the technology needs of public defenders through a series of semi-structured interviews with public defenders and those who work with them. We find that public defenders' ability to reason about novel surveillance data is woefully inadequate not only due to a lack of resources and knowledge, but also due to the structure of the criminal justice system, which gives prosecutors and police (in partnership with private companies) more control over the type of information used in criminal cases than defense attorneys. We find that public defenders may be able to create fairer situations for their clients with better tools for data interpretation and access. Therefore, we call on technologists to attend to the needs of public defenders and the people they represent when designing systems that collect data about people. Our findings illuminate constraints that technologists and privacy advocates should consider as they pursue solutions. In particular, our work complicates notions of individual privacy as the only value in protecting users' rights, and demonstrates the importance of data interpretation alongside data visibility. As data sources become more complex, control over the data cannot be separated from access to the experts and technology to make sense of that data. The growing surveillance data ecosystem may systematically oppress not only those who are most closely observed, but groups of people whose communities and advocates have been deprived of the storytelling power over their information. 
    more » « less
  5. Furnell, Steven (Ed.)
    A huge amount of personal and sensitive data is shared on Facebook, which makes it a prime target for attackers. Adversaries can exploit third-party applications connected to a user’s Facebook profile (i.e., Facebook apps) to gain access to this personal information. Users’ lack of knowledge and the varying privacy policies of these apps make them further vulnerable to information leakage. However, little has been done to identify mismatches between users’ perceptions and the privacy policies of Facebook apps. We address this challenge in our work. We conducted a lab study with 31 participants, where we received data on how they share information in Facebook, their Facebook-related security and privacy practices, and their perceptions on the privacy aspects of 65 frequently-used Facebook apps in terms of data collection, sharing, and deletion. We then compared participants’ perceptions with the privacy policy of each reported app. Participants also reported their expectations about the types of information that should not be collected or shared by any Facebook app. Our analysis reveals significant mismatches between users’ privacy perceptions and reality (i.e., privacy policies of Facebook apps), where we identified over-optimism not only in users’ perceptions of information collection, but also on their self-efficacy in protecting their information in Facebook despite experiencing negative incidents in the past. To the best of our knowledge, this is the first study on the gap between users’ privacy perceptions around Facebook apps and the reality. The findings from this study offer directions for future research to address that gap through designing usable, effective, and personalized privacy notices to help users to make informed decisions about using Facebook apps. 
    more » « less