- Award ID(s):
- 1659473
- NSF-PAR ID:
- 10250314
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 499
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4325 to 4369
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We present spatially resolved kinematic measurements of stellar and ionized gas components of dwarf galaxies in the stellar mass range $10^{8.5}\!-\!10^{10} \, \mathrm{M}_{\odot }$, selected from Sloan Digital Sky Survey DR7 and DR8 and followed up with Keck/Low-Resolution Imaging Spectrometer spectroscopy. We study the potential effects of active galactic nuclei (AGNs) on Galaxy-wide gas kinematics by comparing rotation curves of 26 Galaxies containing AGNs, and 19 control Galaxies with no optical or infrared signs of AGNs. We find a strong association between AGN activity and disturbed gas kinematics in the host Galaxies. While star-forming Galaxies in this sample tend to have orderly gas discs that co-rotate with the stars, 73 per cent of the AGNs have disturbed gas. We find that 5 out of 45 Galaxies have gaseous components in counter-rotation with their stars, and all Galaxies exhibiting counter-rotation contain AGNs. Six out of seven isolated Galaxies with disturbed ionized gas host AGNs. At least three AGNs fall clearly below the stellar–halo mass relation, which could be interpreted as evidence for ongoing star formation suppression. Taken together, these results provide new evidence supporting the ability of AGN to influence gas kinematics and suppress star formation in dwarf galaxies. This further demonstrates the importance of including AGN as a feedback mechanism in galaxy formation models in the low-mass regime.more » « less
-
ABSTRACT E+A galaxies are believed to be a short phase connecting major merger ultraluminous infrared galaxies (ULIRGs) with red and dead elliptical galaxies. Their optical spectrum suggests a massive starburst that was quenched abruptly, and their bulge-dominated morphologies with tidal tails suggest that they are merger remnants. Active galactic nucleus (AGN)-driven winds are believed to be one of the processes responsible for the sudden quenching of star formation and for the expulsion and/or destruction of the remaining molecular gas. Little is known about AGN-driven winds in this short-lived phase. In this paper, we present the first and unique sample of post-starburst galaxy candidates with AGNs that show indications of ionized outflows in their optical emission lines. Using Infrared Astronomical Satellite–far infrared (IRAS–FIR) observations, we study the star formation in these systems and find that many systems selected to have post-starburst signatures in their optical spectrum are in fact obscured starbursts. Using SDSS spectroscopy, we study the stationary and outflowing ionized gas. We also detect neutral gas outflows in 40 per cent of the sources with mass outflow rates 10–100 times more massive than in the ionized phase. The mean mass outflow rate and kinetic power of the ionized outflows in our sample ($\dot{M}\sim 1\, \mathrm{M_{\odot }\, yr^{-1}}$, $\dot{E}\sim 10^{41}\, \mathrm{erg\, s}^{-1}$) are larger than those derived for active galaxies of similar AGN luminosity and stellar mass. For the neutral outflow ($\dot{M}\sim 10\, \mathrm{M_{\odot }\, yr^{-1}}$, $\dot{E}\sim 10^{42}\, \mathrm{erg\, s}^{-1}$), their mean is smaller than that observed in (U)LIRGs with and without AGN.
-
Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8). When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGs with ∼96%–97% obscured fractions. Due to the evolving IR SED shape, the local LIRG templates fit to mid-IR data overestimate the Rayleigh–Jeans tail measurements by a factor of 2–20. These templates underestimate IR luminosities if fit to the observed ALMA fluxes by >0.4 dex. At a given stellar mass or metallicity, dust masses at z ∼ 2.3 are an order of magnitude higher than z ∼ 0. Given the predicted molecular gas fractions, the observed z ∼ 2.3 dust-to-stellar mass ratios suggest lower dust-to-molecular gas masses than in local galaxies with similar metallicities.more » « less
-
ABSTRACT The variety of star formation histories (SFHs) of z ≳ 6 galaxies provides important insights into early star formation, but has been difficult to systematically quantify. Some observations suggest that many z ∼ 6–9 galaxies are dominated by ≳200 Myr stellar populations, implying significant star formation at z ≳ 9, while others find that most reionization era galaxies are ≲10 Myr, consistent with little z ≳ 9 star formation. Here, we quantify the distribution of ages of UV-bright ($-22.5\lesssim M_{\rm \small UV}\lesssim -21$) galaxies colour-selected to lie at z ≃ 6.6–6.9, an ideal redshift range to systematically study the SFHs of reionization era galaxies with ground-based observatories and Spitzer. We infer galaxy properties with two SED modelling codes and compare results, finding that stellar masses are largely insensitive to the model, but the inferred ages can vary by an order of magnitude. We infer a distribution of ages assuming a simple, parametric SFH model, finding a median age of ∼30–70 Myr depending on SED model. We quantify the fractions of ≤10 and ≥250 Myr galaxies, finding that these systems comprise ∼15–30 per cent and ∼20–25 per cent of the population, respectively. With a flexible SFH model, the shapes of the SFHs are consistent with those implied by the simple model (e.g. young galaxies have rapidly rising SFHs). However, stellar masses can differ significantly, with those of young systems sometimes being more than an order of magnitude larger with the flexible SFH. We quantify the implications of these results for z ≳ 9 stellar mass assembly and discuss improvements expected from JWST.
-
ABSTRACT We measure the optical variability in ∼16 500 low-redshift (z ∼ 0.1) galaxies to map the relations between active galactic nucleus (AGN) activity and galaxy stellar mass, specific star formation rate, half-light radius, and bulge-to-total ratio. To do this, we use a reduced χ2 variability measure on >10 epoch light curves from the Zwicky Transient Facility and combine with spectroscopic data and derive galaxy parameters from the Sloan Digital Sky Survey. We find that below the stellar mass of 1011 M⊙, galaxies classed as star-forming via the Baldwin–Phillips–Terlevich diagram have higher mean variabilities than AGN or composite galaxies. Revealingly, the highest mean variabilities occur in star-forming galaxies in a narrow range of specific star formation rate: −11 < log(sSFR/yr−1) < −10. In very actively star-forming galaxies [log(sSFR/yr−1) > −10], the reduced variability implies a lack of instantaneous correlation with star formation rate. Our results may indicate that a high level of variability, and thus black hole growth, acts as a precursor for reduced star formation, bulge growth, and revealed AGN-like emission lines. These results add to the mounting evidence that optical variability can act as a viable tracer for low-mass AGNs and that such AGNs can strongly affect their host galaxy.