skip to main content

Title: The AGN contribution to the UV–FIR luminosities of interacting galaxies and its role in identifying the main sequence
ABSTRACT Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood. To assess the impact of AGNs on interacting systems, we present a spectral energy distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer, and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool cigale, we derive the physical conditions of the interstellar medium, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGN) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about $10^{10} \,\rm {M}_{*}$ are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this more » set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGN–[Ne v]/[Ne ii] plane. We identify a modest correlation between fAGN and mergers in their later stages. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
4325 to 4369
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present spatially resolved kinematic measurements of stellar and ionized gas components of dwarf galaxies in the stellar mass range $10^{8.5}\!-\!10^{10} \, \mathrm{M}_{\odot }$, selected from Sloan Digital Sky Survey DR7 and DR8 and followed up with Keck/Low-Resolution Imaging Spectrometer spectroscopy. We study the potential effects of active galactic nuclei (AGNs) on Galaxy-wide gas kinematics by comparing rotation curves of 26 Galaxies containing AGNs, and 19 control Galaxies with no optical or infrared signs of AGNs. We find a strong association between AGN activity and disturbed gas kinematics in the host Galaxies. While star-forming Galaxies in this sample tendmore »to have orderly gas discs that co-rotate with the stars, 73 per cent of the AGNs have disturbed gas. We find that 5 out of 45 Galaxies have gaseous components in counter-rotation with their stars, and all Galaxies exhibiting counter-rotation contain AGNs. Six out of seven isolated Galaxies with disturbed ionized gas host AGNs. At least three AGNs fall clearly below the stellar–halo mass relation, which could be interpreted as evidence for ongoing star formation suppression. Taken together, these results provide new evidence supporting the ability of AGN to influence gas kinematics and suppress star formation in dwarf galaxies. This further demonstrates the importance of including AGN as a feedback mechanism in galaxy formation models in the low-mass regime.« less
  2. Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8).more »When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGs with ∼96%–97% obscured fractions. Due to the evolving IR SED shape, the local LIRG templates fit to mid-IR data overestimate the Rayleigh–Jeans tail measurements by a factor of 2–20. These templates underestimate IR luminosities if fit to the observed ALMA fluxes by >0.4 dex. At a given stellar mass or metallicity, dust masses at z ∼ 2.3 are an order of magnitude higher than z ∼ 0. Given the predicted molecular gas fractions, the observed z ∼ 2.3 dust-to-stellar mass ratios suggest lower dust-to-molecular gas masses than in local galaxies with similar metallicities.« less
  3. Abstract We aim to determine the intrinsic far-Infrared (far-IR) emission of X-ray-luminous quasars over cosmic time. Using a 16 deg2 region of the Stripe 82 field surveyed by XMM-Newton and Herschel Space Observatory, we identify 2905 X-ray luminous (LX > 1042 erg/s) Active Galactic Nuclei (AGN) in the range z ≈ 0 − 3. The IR is necessary to constrain host galaxy properties such as star formation rate (SFR) and gas mass. However, only 10 per cent of our AGN are detected both in the X-ray and IR. Because 90 per cent of the sample is undetected in the far-IR by Herschel, we explore themore »mean IR emission of these undetected sources by stacking their Herschel/SPIRE images in bins of X-ray luminosity and redshift. We create stacked spectral energy distributions from the optical to the far-IR, and estimate the median star formation rate, dust mass, stellar mass, and infrared luminosity using a fitting routine. We find that the stacked sources on average have similar SFR/Lbol ratios as IR detected sources. The majority of our sources fall on or above the main sequence line suggesting that X-ray selection alone does not predict the location of a galaxy on the main sequence. We also find that the gas depletion timescales of our AGN are similar to those of dusty star forming galaxies. This suggests that X-ray selected AGN host high star formation and that there are no signs of declining star formation.« less
  4. ABSTRACT The sensitivity of X-ray facilities and our ability to detect fainter active galactic nuclei (AGNs) will increase with the upcoming Athena mission and the AXIS and Lynx concept missions, thus improving our understanding of supermassive black holes (BHs) in a luminosity regime that can be dominated by X-ray binaries. We analyse the population of faint AGNs ($L_{\rm x, 2{-}10 \, keV}\leqslant 10^{42}\, \rm erg\,s^{ -1}$) in the Illustris, TNG100, EAGLE, and SIMBA cosmological simulations, and find that the properties of their host galaxies vary from one simulation to another. In Illustris and EAGLE, faint AGNs are powered by low-massmore »BHs located in low-mass star-forming galaxies. In TNG100 and SIMBA, they are mostly associated with more massive BHs in quenched massive galaxies. We model the X-ray binary (XRB) populations of the simulated galaxies, and find that AGNs often dominate the galaxy AGN + XRB hard X-ray luminosity at z > 2, while XRBs dominate in some simulations at z < 2. Whether the AGN or XRB emission dominates in star-forming and quenched galaxies depends on the simulations. These differences in simulations can be used to discriminate between galaxy formation models with future high-resolution X-ray observations. We compare the luminosity of simulated faint AGN host galaxies to observations of stacked galaxies from Chandra. Our comparison indicates that the simulations post-processed with our X-ray modelling tend to overestimate the AGN + XRB X-ray luminosity; luminosity that can be strongly affected by AGN obscuration. Some simulations reveal clear AGN trends as a function of stellar mass (e.g. galaxy luminosity drop in massive galaxies), which are not apparent in the observations.« less
  5. ABSTRACT We examine the 1.4 GHz radio luminosities of galaxies arising from star formation and active galactic nuclei (AGNs) within the state-of-the-art cosmological hydrodynamic simulation Simba. Simba grows black holes via gravitational torque limited accretion from cold gas and Bondi accretion from hot gas, and employs AGN feedback including jets at low Eddington ratios. We define a population of radio loud AGNs (RLAGNs) based on the presence of ongoing jet feedback. Within RLAGN, we define high and low excitation radio galaxies (HERGs and LERGs) based on their dominant mode of black hole accretion: torque limited accretion representing feeding from a cold disc,more »or Bondi representing advection-dominated accretion from a hot medium. Simba predicts good agreement with the observed radio luminosity function (RLF) and its evolution, overall as well as separately for HERGs and LERGs. Quiescent galaxies with AGN-dominated radio flux dominate the RLF at $\gtrsim 10^{22-23}$ W Hz−1, while star formation dominates at lower radio powers. Overall, RLAGNs have higher black hole accretion rates and lower star formation rates than non-RLAGN at a given stellar mass or velocity dispersion, but have similar black hole masses. Simba predicts an LERG number density of 8.53 Mpc−3, ∼10× higher than for HERGs, broadly as observed. While LERGs dominate among most massive galaxies with the largest black holes and HERGs dominate at high specific star formation rates, they otherwise largely populate similar-sized dark matter haloes and have similar host galaxy properties. Simba thus predicts that deeper radio surveys will reveal an increasing overlap between the host galaxy demographics of HERGs and LERGs.« less