skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Characterizing the Molecular Gas in Infrared Bright Galaxies with CARMA
Abstract We present the CO(1–0) maps of 28 infrared-bright galaxies from the Great Observatories All-Sky Luminous Infrared Galaxy Survey (GOALS) taken with the Combined Array for Research in Millimeter Astronomy (CARMA). We detect 100 GHz continuum in 16 of the 28 CARMA GOALS galaxies, which trace both active galactic nuclei (AGNs) and compact star-forming cores. The GOALS galaxies show a variety of molecular gas morphologies, though in the majority of cases the average velocity fields show a gradient consistent with rotation. We fit the full continuum spectral energy distributions (SEDs) of each of the sources using eithermagphysor SED3FIT (if there are signs of an AGN) to derive the total stellar mass, dust mass, and SFRs of each object. We adopt a value determined from luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) ofαCO= 1.5 0.8 + 1.3 M(K km s−1pc2)−1, which leads to more physical values forfmoland the gas-to-dust ratio. Mergers tend to have the highest gas-to-dust ratios. We assume the cospatiality of the molecular gas and star formation and plot the CARMA GOALS sample on the Schmidt–Kennicutt relation, where we find that they preferentially lie above the line set by normal star-forming galaxies. This hyper-efficiency is likely due to the increased turbulence in these systems, which decreases the freefall time compared to star-forming galaxies, leading to “enhanced” star formation efficiency. Line wings are present in a non-negligible subsample (11/28) of the CARMA GOALS sources and are likely due to outflows driven by AGNs or star formation, gas inflows, or additional decoupled gas components.  more » « less
Award ID(s):
2239807
PAR ID:
10612033
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
975
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
241
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a stringent measurement of the dust-obscured star formation rate density (SFRD) atz= 4–6 from the ASPIRE JWST Cycle-1 medium and ALMA Cycle-9 large program. We obtained JWST/NIRCam grism spectroscopy and ALMA 1.2 mm continuum map along 25 independent quasar sightlines, covering a total survey area of  ∼35 arcmin2where we search for dusty star-forming galaxies (DSFGs) atz= 0–7. We identify eight DSFGs in seven fields atz= 4–6 through the detection of Hαor [O iii]λ5008 lines, including fainter lines such as Hβ, [O iii]λ4960, [N ii]λ6585, and [S ii]λλ6718,6733 for six sources. With this spectroscopically complete DSFG sample atz= 4–6 and negligible impact from cosmic variance (shot noise), we measure the infrared luminosity function (IRLF) down toLIR ∼ 2 × 1011L. We find flattening of IRLF atz= 4–6 towards the faint end (power-law slope α = 0.5 9 0.45 + 0.39 ). We determine the dust-obscured cosmic SFRD at this epoch to be log [ ρ SFR , IR / ( M yr 1 Mpc 3 ) ] = 1.5 2 0.13 + 0.14 . This is significantly higher than previous determinations using ALMA data in the Hubble Ultra Deep Field, which is void of DSFGs atz= 4–6 because of strong cosmic variance (shot noise). We conclude that the majority (66% ± 7%) of cosmic star formation atz ∼ 5 is still obscured by dust. We also discuss the uncertainty of SFRD propagated from far-IR spectral energy distribution and IRLF at the bright end, which will need to be resolved with future ALMA and JWST observations. 
    more » « less
  2. Abstract We present spatially resolved morphological properties of [CII] 158μm, [OIII] 88μm, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz= 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII] line and UV continuum are compact, the [CII] line is extended up to a radius ofr∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μm, we find an average dust temperature and emissivity index of T dust = 41 14 + 17 K and β = 1.7 0.7 + 1.1 , respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1Myr−1with an obscured fraction of 87%. While the [OIII] line is a good tracer of the SFR, the [CII] line shows deviation from the localL[CII]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII] and [OIII], with significant residuals (∼5σ) in the [OIII] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII] structure from the cooling of hot ionized outflows. The extended [CII] and high-velocity [OIII] emission may both contribute in part to the highL[OIII]/L[CII]ratios recently reported inz> 6 galaxies. 
    more » « less
  3. Abstract We present JWST and Atacama Large Millimeter/submillimeter Array (ALMA) imaging for the lensing system SPT0418−47, which includes a strongly lensed, dusty, star-forming galaxy at redshiftz= 4.225 and an associated multiply imaged companion. The JWST NIRCam and MIRI imaging observations presented in this paper were acquired as part of the Early Release Science program Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation (TEMPLATES). This data set provides robust mutiwavelength detections of stellar light in both the main (SPT0418A) and companion (SPT0418B) galaxies, while the ALMA detection of [Cii] emission confirms that SPT0418B lies at the same redshift as SPT0418A. We infer that the projected physical separation of the two galaxies is 4.42 ± 0.05 kpc. We derive total magnifications ofμ= 29 ± 1 andμ= 4.1 ± 0.7 for SPT0418A and SPT0418B, respectively. We use bothprospectorandcigaleto derive stellar masses. We find that SPT0418A has a stellar mass of M * = 3.4 0.6 + 1.1 × 10 10 M fromprospector orM*= 1.5 ± 0.3 × 1010Mfromcigale. The stellar mass ratio of SPT0418A and SPT0418B is roughly between 4 and 7 ( 4.2 1.6 + 1.9 forprospectorand 7.5 ± 3.7 forcigale). We see evidence of extended structure associated with SPT0418A that is suggestive of a tidal feature. These features, along with the close projected proximity, imply that the system is interacting. Interestingly, the star formation rates and stellar masses of both galaxies are consistent with the main sequence of star-forming galaxies at this epoch, indicating that this ongoing interaction has not noticeably elevated the star formation levels. 
    more » « less
  4. Abstract We report CO(5 → 4) and CO(6 → 5) line observations in the dusty starbursting galaxy CRLE (z= 5.667) and the main-sequence (MS) galaxy HZ10 (z= 5.654) with the Northern Extended Millimeter Array. CRLE is the most luminousz> 5 starburst in the COSMOS field and HZ10 is the most gas-rich “normal” galaxy currently known atz> 5. We find line luminosities for CO(5 → 4) and CO(6 → 5) of (4.9 ± 0.5) and (3.8 ± 0.4) × 1010K km s−1pc2for CRLE and upper limits of < 0.76 and < 0.60 × 1010K km s−1pc2for HZ10, respectively. The CO excitation of CRLE appears comparable to otherz> 5 dusty star-forming galaxies. For HZ10, these line luminosity limits provide the first significant constraints of this kind for an MS galaxy atz> 5. We find the upper limit of L 5 4 / L 2 1 in HZ10 could be similar to the average value for MS galaxies aroundz≈ 1.5, suggesting that MS galaxies with comparable gas excitation may already have existed one billion years after the Big Bang. For CRLE we determine the most likely values for the H2density, kinetic temperature, and dust temperature based on excitation modeling of the CO line ladder. We also derive a total gas mass of (7.1 ± 1.3) × 1010M. Our findings provide some of the currently most detailed constraints on the gas excitation that sets the conditions for star formation in a galaxy protocluster environment atz> 5. 
    more » « less
  5. Abstract We present a survey undertaken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the galaxies associated with a representative sample of 16 damped Lyαabsorbers (DLAs) atz ≈ 4.1–4.5, using the [Cii] 158μm ([Cii]) line. We detect seven [Cii]-emitting galaxies in the fields of five DLAs, all of which have absorption metallicity [M/H] > −1.5. We find that the detectability of these Hi-selected galaxies with ALMA is a strong function of DLA metallicity, with a detection rate of 7 1 20 + 11 % for DLAs with [M/H] > −1.5 and 0+18% for DLAs with [M/H] < −1.5. The identified DLA galaxies have far-IR properties similar to those of typical star-forming galaxies atz ∼ 4, with estimated obscured star formation rates ranging from ≲6Myr−1to 110Myr−1. High-metallicity DLAs therefore provide an efficient way to identify and study samples of high-redshift, star-forming galaxies, without preselecting the galaxies by their emission properties. The agreement between the velocities of the metal absorption lines of the DLA and the [Cii] emission line of the DLA galaxy indicates that the metals within the DLA originated in the galaxy. With observed impact parameters between 14 and 59 kpc, this indicates that star-forming galaxies atz ∼ 4 have a substantial reservoir of dense, cold, neutral gas within their circumgalactic medium that has been enriched with metals from the galaxy. 
    more » « less