Whereas recruitment success for many fisheries depends on coincident timing of larvae with abundance peaks of their prey, less can be more in the tropical/subtropical spawning areas of bluefin tunas if lower but steady food resources are offset by reduced larval vulnerability to pelagic predators. To understand larval habitat characteristics for Southern Bluefin Tuna (SBT), we quantified microbial community carbon flows based on growth and grazing rates from depth profiles of dilution incubations and carbon biomass assessments from microscopy and flow cytometry (FCM) during their peak spawning off NW Australia (Indian Ocean) in February 2022. Two Chla-based estimates of phytoplankton production gave differing offsets due to cycling or mixotrophy, exceeding 14C net community production on average (677 ± 98 versus 447 ± 43 mg C m−2 d−1). Productivity was higher than in the Gulf of Mexico spawning area for Atlantic Bluefin Tuna but less than similar studies of oceanic upwelling regions. Microzooplankton grazing averaged 482 ± 63 mg C m−2 d−1 (71 ± 13 % of production). Two measurement variables for Prochlorococcus gave average production and grazing rates of 282 ± 36 and 248 ± 32 mg C m−2 d−1 (86 ± 6 % grazed). Prochlorococcus comprised almost half of production and grazing fluxes in the upper (0–25 m) euphotic zone where SBT larvae reside. Prochlorococcus declined and eukaryotic phytoplankton and heterotrophic bacteria increased in relative importance in the lower euphotic zone. These results describe relatively classic open-ocean oligotrophic conditions as the food web base for nutritional flows to SBT larvae.
more »
« less
Food-web fluxes support high rates of mesozooplankton respiration and production in the equatorial Pacific
We investigated how the network of food-web flows in open-ocean systems might support high rates of mesozooplankton respiration and production by comparing predicted rates from empirical relationships to independently determined solutions from an inverse model based on tightly constrained field-measured rates for the equatorial Pacific. Model results were consistent with estimates of gross:net primary production (GPP:NPP), bacterial production:NPP, sinking particulate export, and total export for the equatorial Pacific, as well as general literature values for growth efficiencies of bacteria, protozooplankton, and metazooplankton. Mean rate estimates from the model compared favorably with the respiration predictions from Ikeda (1985; Mar Biol 85:1-11 ) (146 vs. 144 mg C m -2 d -1 , respectively) and with production estimates from the growth rate equation of Hirst & Sheader (1997; Mar Ecol Prog Ser 154:155-165 ) (153 vs. 144 mg C m -2 d -1 ). Metazooplankton nutritional requirements are met with a mixed diet of protozooplankton (39%), phytoplankton (36%), detritus (15%), and carnivory (10%). Within the food-web network, NPP of 896 mg C m -2 d -1 supports a total heterotrophic carbon demand from bacteria, protozoa, and metazooplankton that is 2.5 times higher. Scaling our results to primary production and zooplankton biomass at Stn ALOHA suggests that zooplankton nutritional requirements for high growth might similarly be met in oligotrophic subtropical waters through a less efficient trophic structure. Metazooplankton production available to higher-level consumers is a significant contributor to the total export needed for an overall biogeochemical balance of the region and to export requirements to meet carbon demand in the mesopelagic depth range.
more »
« less
- Award ID(s):
- 1756517
- PAR ID:
- 10250355
- Date Published:
- Journal Name:
- Marine Ecology Progress Series
- Volume:
- 652
- ISSN:
- 0171-8630
- Page Range / eLocation ID:
- 15 to 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Phytoplankton growth and microzooplankton grazing rates were measured in repeated profiles of dilution experiments incubated in situ on a drift array in order to assess microbial production and food web characteristics in the oligotrophic bluefin tuna spawning habitat of the Gulf of Mexico (May peak spawning seasons, 2017–2018). Grazing often exceeded growth with the processes more balanced overall in the surface mixed layer, but biomass accumulated in the mid-euphotic zone. Community production estimates (260–500 mg C m−2 day−1) were low compared to similar open-ocean studies in the Pacific Ocean. Prochlorococcus was a consistent major contributor (113–204 mg C m−2 day−1) to productivity, while diatoms and dinoflagellates (2–10 and 4–13 mg C m−2 day−1, respectively) were consistently low. Prymnesiophytes, the most dynamic component (34–134 mg C m−2 day−1), co-dominated in 2017 experiments. Unexpected imbalances in grazing relative to production were observed for all picoplankton populations (Prochlorococcus, Synechococcus and heterotrophic bacteria), suggesting a trophic cascade in the absence of mesozooplankton predation on large microzooplankton. Study sites with abundant larval tuna had the shallowest deep chlorophyll maxima and significant net positive phytoplankton growth below the mixed layer.more » « less
-
null (Ed.)Abstract We investigated size-fractioned biomass, isotopes and grazing of mesozooplankton communities in the larval habitat of Atlantic bluefin tuna (ABT) in the oceanic Gulf of Mexico (GoM) during the peak spawning month of May. Euphotic-zone biomass ranged from 101 to 513 mg C m−2 during the day and 216 to 798 mg C m−2 at night. Grazing varied from 0.1 to 1.0 mg Chla m−2 d−1, averaging 1–3% of phytoplankton Chla consumed d−1. Carnivorous taxa dominated the biomass of > 1-mm zooplankton (78% day; 60% night), while only 13% of smaller zooplankton were carnivores. δ15N enrichment between small and large sizes indicates a 0.5–0.6 trophic-step difference. Although characteristics of GoM zooplankton are generally similar to those of remote oligotrophic subtropical regions, zooplankton stocks in the ABT larval habitat are disproportionately high relative to primary production, compared with HOT and BATS averages. Growth-grazing balances for phytoplankton were resolved with a statistically insignificant residual, and trophic fluxes from local productivity were sufficient to satisfy C demand of suspension feeding mesozooplankton. While carnivore C demand was met by local processes in the central GoM, experiments closer to the coastal margin suggest the need for a lateral subsidy of zooplankton biomass to the oceanic region.more » « less
-
Abstract. Diel vertical migration (DVM) can enhance the verticalflux of carbon (C), and so contributes to the functioning of the biologicalpump in the ocean. The magnitude and efficiency of this active transport ofC may depend on the size and taxonomic structure of the migrant zooplankton.However, the impact that a variable community structure can have onzooplankton-mediated downward C flux has not been properly addressed. Thistaxonomic effect may become critically important in highly productiveeastern boundary upwelling systems (EBUSs), where high levels of zooplanktonbiomass are found in the coastal zone and are composed by a diverse communitywith variable DVM behavior. In these systems, presence of a subsurfaceoxygen minimum zone (OMZ) can impose an additional constraint to verticalmigration and so influence the downward C export. Here, we address theseissues based on a vertically stratified zooplankton sampling at threestations off northern Chile (20–30∘ S) duringNovember–December 2015. Automated analysis of zooplankton composition andtaxa-structured biomass allowed us to estimate daily migrant biomass by taxaand their amplitude of migration. We found that a higher biomass aggregatesabove the oxycline, associated with more oxygenated surface waters and thiswas more evident upon a more intense OMZ. Some taxonomic groups, however,were found closely associated with the OMZ. Most taxa were able to performDVM in the upwelling zone withstanding severe hypoxia. Also, strongmigrants, such as eucalanid copepods and euphausiids, can exhibit a largemigration amplitude (∼500 m), remaining either temporarily orpermanently within the core of the OMZ and thus contributing to the releaseof C below the thermocline. Our estimates of DVM-mediated C flux suggestedthat a mean migrant biomass of ca. 958 mg C m−2 d−1 may contributewith about 71.3 mg C m−2 d−1 to the OMZ system through respiration,mortality and C excretion at depth, accounting for ca. 4 % of the netprimary production, and so implies the existence of an efficient mechanismto incorporate freshly produced C into the OMZ. This downward C fluxmediated by zooplankton is however spatially variable and mostly dependenton the taxonomic structure due to variable migration amplitude and DVMbehavior.more » « less
-
Abstract Export rates of organic matter (OM) were determined based on PO43−, NO3−and O2budgets during GEOTRACES cruise GP15 in the Pacific Ocean that crossed subpolar, subtropical and equatorial regimes. Lowest OM export rates at 3–5 mmol C/m2/yr were found in the subtropical regions and highest rates at 9–12 mmol C/m2/yr were found in the equatorial and subpolar regions. Satellite based OM export rates showed similar regional trends but with a significantly larger range. The budget and satellite‐based OM export rates were 3–15× higher than estimates of particle loss rates based on234Th and sediment trap collections, with the differences primarily due to non‐particle forms of OM export and different integration times of methods. The efficiency of export varied from 0.1 to 0.3, with the lowest efficiencies in the subtropics and highest efficiencies in the subpolar and equatorial regions.more » « less
An official website of the United States government

