skip to main content


Title: Microbial dynamics of elevated carbon flux in the open ocean’s abyss
In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems.  more » « less
Award ID(s):
1756517
NSF-PAR ID:
10250378
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
4
ISSN:
0027-8424
Page Range / eLocation ID:
e2018269118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes. 
    more » « less
  2. null (Ed.)
    The biological pump plays a vital role in exporting organic particles into the deep ocean for long-term carbon sequestration. However, much remains unknown about some of its key microbial players. In this study, Labyrinthulomycetes protists (LP) were used to understand the significance of heterotrophic microeukaryotes in the transport of particulate organic matter from the surface to the dark ocean. Unlike the sharp vertical decrease of prokaryotic biomass, the LP biomass only slightly decreased with depth and eventually exceeded prokaryotic biomass in the bathypelagic layer. Sequencing identified high diversity of the LP communities with a dominance of Aplanochytrium at all depths. Notably, ASVs that were observed in the surface layer comprised ~20% of ASVs and ~60% of sequences in each of the deeper (including bathypelagic) layers, suggesting potential vertical export of the LP populations to the deep ocean. Further analyses of the vertical patterns of the 50 most abundant ASVs revealed niche partitioning of LP phylotypes in the pelagic ocean, including those that could decompose organic detritus and/or facilitate the formation of fast-sinking particles. Overall, this study presents several lines of evidence that the LP can be an important component of the biological pump through their multiple ecotypes in the pelagic ocean. 
    more » « less
  3. dos Santos, Adriana Lopes (Ed.)
    ABSTRACT Labyrinthulomycetes protists are an important heterotrophic component of microeukaryotes in the world’s oceans, but their distribution patterns and ecological roles are poorly understood in pelagic waters. This study employed flow cytometry and high-throughput sequencing to characterize the abundance, diversity, and community structure of Labyrinthulomycetes in the pelagic Eastern Indian Ocean. The total Labyrinthulomycetes abundance varied much more among stations than did the abundance of prokaryotic plankton, reaching over 1,000 cells mL −1 at a few “bloom” stations. The total Labyrinthulomycetes abundance did not decline with depth throughout the whole water column (5 to 2,000 m) like the abundance of prokaryotic plankton did, and the Labyrinthulomycetes average projected biomass over all samples was higher than that of the prokaryotic plankton. However, Labyrinthulomycetes diversity showed obvious vertical variations, with richness, Shannon diversity, and evenness greatest in the upper epipelagic, lower epipelagic, and deep waters, respectively. Many abundant phylotypes were detected across multiple water layers, which aligned with the constant vertical Labyrinthulomycetes biomass, suggesting potential sinking and contribution to the biological pump. Hierarchical clustering revealed distinct ecotypes partitioning by vertical distribution patterns, suggesting their differential roles in the carbon cycle and storage processes. Particularly, most phylotypes showed patchy distributions (occurring in only few samples) as previously found in the coastal waters, but they were less associated with the Labyrinthulomycetes blooms than the prevalent phylotypes. Overall, this study revealed distinct patterns of Labyrinthulomycetes ecotypes and shed light on their importance in the pelagic ocean carbon cycling and sequestration relative to that of the prokaryotic plankton. IMPORTANCE While prokaryotic heterotrophic plankton are well accepted as major players in oceanic carbon cycling, the ecological distributions and functions of their microeukaryotic counterparts in the pelagic ocean remain largely unknown. This study focused on an important group of heterotrophic (mainly osmotrophic) protistan microbes, the Labyrinthulomycetes, whose biomass can surpass that of the prokaryotic plankton in many marine ecosystems, including the bathypelagic ocean. We found patchy horizontal but persistent vertical abundance profiles of the Labyrinthulomycetes protists in the pelagic waters of the Eastern Indian Ocean, which were distinct from the spatial patterns of the prokaryotic plankton. Moreover, multiple Labyrinthulomycetes ecotypes with distinct vertical patterns were detected and, based on the physiologic, metabolic, and genomic understanding of their cultivated relatives, were inferred to play multifaceted key roles in the carbon cycle and sequestration, particularly as contributors to the vertical carbon export from the surface to the dark ocean, i.e., the biological pump. 
    more » « less
  4. Midwater zooplankton are major agents of biogeochemical transformation in the open ocean; however their characteristics and activity remain poorly known. Here we evaluate midwater zooplankton biomass, amino acid (AA)-specific stable isotope composition (δ15N values) using compound-specific isotope analysis of amino acids (CSIA-AA), trophic position, and elemental composition in the North Pacific Subtropical Gyre (NPSG). We focus on zooplankton collected in the winter, spring, and summer to evaluate midwater trophic dynamics over a seasonal cycle. For the first time we find that midwater zooplankton respond strongly to seasonal changes in production and export in the NPSG. In summer, when export from the euphotic zone is elevated and this ‘summer pulse’ material is transported rapidly to depth, CSIA-AA indicates that large particles (> 53 μm) dominate the food web base for zooplankton throughout the midwaters, and to a large extent even into the upper bathypelagic zone. In winter, when export is low, zooplankton in the mid-mesopelagic zone continue to rely on large particle basal resources, but resident zooplankton in the lower mesopelagic and upper bathypelagic zones switch to include smaller particles (0.7–53 μm) in their food web base, or even a subset of the small particle pool. Midwater zooplankton migration patterns also vary with season, with migrants distributed more evenly at night through the euphotic zone in summer as compared to being more compressed in the upper mixed layer in winter. Deeper zooplankton migration within the mesopelagic zone is also reduced in late summer, likely due to the increased magnitude of large particle material available at depth during this season. Our observed seasonal change in activity and trophic dynamics drives modestly greater biomass in summer than winter through the mesopelagic zone. In contrast midwater zooplankton carbon (C), nitrogen (N), and phosphorus (P) composition does not change with season. Instead we find increasing C:N, C:P, and N:P ratios with greater depths, likely due to decreases in proteinaceous structures and organic P compounds and increases in storage lipids with depth. Our study highlights the importance and diversity of feeding strategies for small zooplankton in NPSG midwaters. Many small zooplankton, such as oncaeid and oithonid copepods, are able to access small particle resources at depth and may be an important trophic link between the microbial loop and deep dwelling micronekton species that also rely on small particle-based food webs. Our observed midwater zooplankton trophic response to export-driven variation in the particle field at depth has important implications for midwater metabolism and the export of C to the deep sea. 
    more » « less
  5. Abstract

    Microbial community dynamics on sinking particles control the amount of carbon that reaches the deep ocean and the length of time that carbon is stored, with potentially profound impacts on Earth’s climate. A mechanistic understanding of the controls on sinking particle distributions has been hindered by limited depth- and time-resolved sampling and methods that cannot distinguish individual particles. Here, we analyze microbial communities on nearly 400 individual sinking particles in conjunction with more conventional composite particle samples to determine how particle colonization and community assembly might control carbon sequestration in the deep ocean. We observed community succession with corresponding changes in microbial metabolic potential on the larger sinking particles transporting a significant fraction of carbon to the deep sea. Microbial community richness decreased as particles aged and sank; however, richness increased with particle size and the attenuation of carbon export. This suggests that the theory of island biogeography applies to sinking marine particles. Changes in POC flux attenuation with time and microbial community composition with depth were reproduced in a mechanistic ecosystem model that reflected a range of POC labilities and microbial growth rates. Our results highlight microbial community dynamics and processes on individual sinking particles, the isolation of which is necessary to improve mechanistic models of ocean carbon uptake.

     
    more » « less