skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Power of the Hybrid Model for Mean Estimation
Abstract We explore the power of the hybrid model of differential privacy (DP), in which some users desire the guarantees of the local model of DP and others are content with receiving the trusted-curator model guarantees. In particular, we study the utility of hybrid model estimators that compute the mean of arbitrary realvalued distributions with bounded support. When the curator knows the distribution’s variance, we design a hybrid estimator that, for realistic datasets and parameter settings, achieves a constant factor improvement over natural baselines.We then analytically characterize how the estimator’s utility is parameterized by the problem setting and parameter choices. When the distribution’s variance is unknown, we design a heuristic hybrid estimator and analyze how it compares to the baselines. We find that it often performs better than the baselines, and sometimes almost as well as the known-variance estimator. We then answer the question of how our estimator’s utility is affected when users’ data are not drawn from the same distribution, but rather from distributions dependent on their trust model preference. Concretely, we examine the implications of the two groups’ distributions diverging and show that in some cases, our estimators maintain fairly high utility. We then demonstrate how our hybrid estimator can be incorporated as a sub-component in more complex, higher-dimensional applications. Finally, we propose a new privacy amplification notion for the hybrid model that emerges due to interaction between the groups, and derive corresponding amplification results for our hybrid estimators.  more » « less
Award ID(s):
1943584 1755992
PAR ID:
10250385
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2020
Issue:
4
ISSN:
2299-0984
Page Range / eLocation ID:
48 to 68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a hybrid model of differential privacy that considers a combination of regular and opt-in users who desire the differential privacy guarantees of the local privacy model and the trusted curator model, respectively. We demonstrate that within this model, it is possible to design a new type of blended algorithm that improves the utility of obtained data, while providing users with their desired privacy guarantees. We apply this algorithm to the task of privately computing the head of the search log and show that the blended approach provides significant improvements in the utility of the data compared to related work. Specifically, on two large search click data sets, comprising 1.75 and 16 GB, respectively, our approach attains NDCG values exceeding 95% across a range of privacy budget values. 
    more » « less
  2. Marc'Aurelio Ranzato, Alina Beygelzimer (Ed.)
    Implementations of the exponential mechanism in differential privacy often require sampling from intractable distributions. When approximate procedures like Markov chain Monte Carlo (MCMC) are used, the end result incurs costs to both privacy and accuracy. Existing work has examined these effects asymptotically, but implementable finite sample results are needed in practice so that users can specify privacy budgets in advance and implement samplers with exact privacy guarantees. In this paper, we use tools from ergodic theory and perfect simulation to design exact finite runtime sampling algorithms for the exponential mechanism by introducing an intermediate modified target distribution using artificial atoms. We propose an additional modification of this sampling algorithm that maintains its ǫ-DP guarantee and has improved runtime at the cost of some utility. We then compare these methods in scenarios where we can explicitly calculate a δ cost (as in (ǫ, δ)-DP) incurred when using standard MCMC techniques. Much as there is a well known trade-off between privacy and utility, we demonstrate that there is also a trade-off between privacy guarantees and runtime. 
    more » « less
  3. Tauman Kalai, Yael; Smith, Adam D; Wichs, Daniel (Ed.)
    Motivated by the desire to bridge the utility gap between local and trusted curator models of differential privacy for practical applications, we initiate the theoretical study of a hybrid model introduced by "Blender" [Avent et al., USENIX Security '17], in which differentially private protocols of n agents that work in the local-model are assisted by a differentially private curator that has access to the data of m additional users. We focus on the regime where m ≪ n and study the new capabilities of this (m,n)-hybrid model. We show that, despite the fact that the hybrid model adds no significant new capabilities for the basic task of simple hypothesis-testing, there are many other tasks (under a wide range of parameters) that can be solved in the hybrid model yet cannot be solved either by the curator or by the local-users separately. Moreover, we exhibit additional tasks where at least one round of interaction between the curator and the local-users is necessary - namely, no hybrid model protocol without such interaction can solve these tasks. Taken together, our results show that the combination of the local model with a small curator can become part of a promising toolkit for designing and implementing differential privacy. 
    more » « less
  4. Abstract In the past decade, differential privacy has seen remarkable success as a rigorous and practical formalization of data privacy. This privacy definition and its divergence based relaxations, however, have several acknowledged weaknesses, either in handling composition of private algorithms or in analysing important primitives like privacy amplification by subsampling. Inspired by the hypothesis testing formulation of privacy, this paper proposes a new relaxation of differential privacy, which we term ‘f-differential privacy’ (f-DP). This notion of privacy has a number of appealing properties and, in particular, avoids difficulties associated with divergence based relaxations. First, f-DP faithfully preserves the hypothesis testing interpretation of differential privacy, thereby making the privacy guarantees easily interpretable. In addition, f-DP allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide a powerful technique to import existing results proven for the original differential privacy definition to f-DP and, as an application of this technique, obtain a simple and easy-to-interpret theorem of privacy amplification by subsampling for f-DP. In addition to the above findings, we introduce a canonical single-parameter family of privacy notions within the f-DP class that is referred to as ‘Gaussian differential privacy’ (GDP), defined based on hypothesis testing of two shifted Gaussian distributions. GDP is the focal privacy definition among the family of f-DP guarantees due to a central limit theorem for differential privacy that we prove. More precisely, the privacy guarantees of any hypothesis testing based definition of privacy (including the original differential privacy definition) converges to GDP in the limit under composition. We also prove a Berry–Esseen style version of the central limit theorem, which gives a computationally inexpensive tool for tractably analysing the exact composition of private algorithms. Taken together, this collection of attractive properties render f-DP a mathematically coherent, analytically tractable and versatile framework for private data analysis. Finally, we demonstrate the use of the tools we develop by giving an improved analysis of the privacy guarantees of noisy stochastic gradient descent. 
    more » « less
  5. Wang, H; Xiao, X (Ed.)
    Differential privacy (DP) is applied when fine-tuning pre-trained language models (LMs) to limit leakage of training examples. While most DP research has focused on improving a model’s privacy-utility tradeoff, some find that DP can be unfair to or biased against underrepresented groups. In this work, we extensively analyze the impact of DP on bias in LMs. We find differentially private training can increase the model bias against protected groups w.r.t AUC-based bias metrics. DP makes it more difficult for the model to differentiate between the positive and negative examples from the protected groups and other groups in the rest of the population. Our results also show that the impact of DP on bias is affected by both the privacy protection level and the underlying distribution of the dataset. 
    more » « less