skip to main content


Title: Living on the edge: spatial response of coyotes ( Canis latrans ) to wolves ( Canis lupus ) in the subarctic
Understanding how mesopredators manage the risks associated with apex predators is key to explaining impacts of apex predators on mesopredator populations and patterns of mesopredator space use. Here we examine the spatial response of coyotes (Canis latrans Say, 1823) to risk posed by wolves (Canis lupus Linnaeus, 1758) using data from sympatric individuals fitted with GPS collars in subarctic Alaska, USA, near the northern range limit for coyotes. We show that coyotes do not universally avoid wolves, but instead demonstrate season-specific responses to both wolf proximity and long-term use of the landscape by wolves. Specifically, coyotes switched from avoiding wolves in summer to preferring areas with wolves in winter, and this selection was consistent across short-term and longer term temporal scales. In the summer, coyotes responded less strongly to risk of wolves when in open areas than when in closed vegetation. We also demonstrate that coyotes maintain extremely large territories averaging 291 km 2 , and experience low annual survival (0.50) with large carnivores being the largest source of mortality. This combination of attraction and avoidance predicated on season and landcover suggests that mesopredators use complex behavioral strategies to mediate the effects of apex predators.  more » « less
Award ID(s):
1652420
NSF-PAR ID:
10250394
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Canadian Journal of Zoology
Volume:
99
Issue:
4
ISSN:
0008-4301
Page Range / eLocation ID:
279 to 288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Apex predators can influence ecosystems through density and behaviorally mediated effects on herbivores and mesopredators. In many parts of the world, apex predators live in, or are returning to, landscapes that have been modified by people; so, it is important to understand their ecological role in anthropogenic landscapes. We used motion-activated game cameras to compare the activity patterns of humans and 2 mesopredators, coyotes (Canis latrans) and bobcats (Lynx rufus), in areas with and without an apex predator, the gray wolf (Canis lupus), in a multiuse landscape of the northwestern United States. In areas with wolves, there was a significant increase in temporal niche overlap between the mesopredators owing to higher levels of coyote activity at all time periods of the day. Temporal overlap between mesopredators and humans also increased significantly in the presence of wolves. Coyotes exposed to wolves increased their activity during dawn, day, and dusk hours. The increase in coyote activity was greatest during the day, when wolves were least active. The direction of change in bobcat activity in areas with wolves was opposite to coyotes, suggesting a behaviorally mediated cascade between wolves, coyotes, and bobcats, although these findings would need to be confirmed with further research. Our findings suggest that mesopredators in human-dominated systems may perceive humans as less dangerous than apex predators, that humans may be more likely to encounter mesopredators in areas occupied by top predators, and that behaviorally mediated effects of apex predators on mesopredators persist in human-dominated landscapes.

     
    more » « less
  2. Abstract

    Large carnivores often exhibit high survival rates in protected areas, whereas intentional and unintentional human‐caused mortality may be greater in adjacent areas. These patterns can result in source‐sink dynamics and limit population expansion beyond protected areas.

    We used telemetry data from 438 canids in 141 packs collected from 2002 to 2020 to evaluate mortality risk for wolves, coyotes, and admixed canids in a 3‐species hybrid zone in and adjacent to a large protected area in Ontario, Canada. The hybrid zone is occupied by most of the remaining eastern wolves (Canis lycaon), a rare, threatened species that hybridizes with sympatric eastern coyotes (C. latrans) and Great Lakes grey wolves (C. lupus).

    Within Algonquin Provincial Park (APP), annual human‐caused mortality from harvest and vehicles was low (0.06, 95% CI [0.03, 0.08]), whereas annual human‐caused mortality was higher in adjacent areas (0.31, 95% CI [0.25, 0.37]). Smaller protected areas implemented to help protect eastern wolves did not significantly reduce mortality. Eastern wolves survived poorly relative to other canids and dispersing canids survived poorly relative to residents. Mortality risk was greater when canids were closer to roads. Mortality risk was also increased or reduced by the strength of individual‐level selection or avoidance of roads relative to their availability, respectively.

    Our results provide a comprehensive evaluation of factors influencing spatial variation in mortality risk for canids to inform eastern wolf recovery efforts. Additionally, we developed a novel modelling approach for investigating the influence of resource selection on mortality risk, which highlighted that individual‐level responses to risk can strongly influence population‐level mortality patterns.

    Synthesis and applications. Despite being listed as ‘threatened’ under the Ontario Endangered Species Act, eastern wolves are still legally trapped and shot outside protected areas in central Ontario. Eastern wolves and dispersing canids survive poorly outside of APP, primarily from human‐caused mortality. These results, along with the apparent inadequacy of the smaller protected areas, suggest that expanding the threatened eastern wolf population outside APP is unlikely under current management conditions. Protecting eastern wolves from human‐caused mortality is complicated as it would require a harvest ban for all canids, including coyotes.

     
    more » « less
  3. Abstract

    There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.

    We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk(Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U.americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C.lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.

    We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98,p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.

    A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems.

     
    more » « less
  4. Hopkins, Jack (Ed.)
    Abstract Carrion represents an important resource for carnivores. Examining competition for carrion in a risk–reward framework allows for a better understanding of how predator guilds compete for and benefit from carrion. We used trail camera data to compare wintertime carrion use and vigilance behavior of four carnivores in Denali National Park and Preserve. We found that carrion use was dominated by wolves (Canis lupus) and wolverines (Gulo gulo), followed by red foxes (Vulpes vulpes) and coyotes (Canis latrans). Wolves and wolverines were twice as likely to visit a carcass as foxes and coyotes, and their visits were longer and more numerous. Our results suggest scavenging animals reduced their risk exposure primarily by reducing their use of carrion, with some evidence of increased vigilance at busy sites. We found that carrion use and behavior at carcass sites were influenced by the mortality type of the carcass, the age of the carcass, and the long-term intensity of wolf use in the area. Our results also suggest that wolves are the “top scavenger,” and indicate that intraguild competition for carrion strongly affects which species benefit from carrion, with larger and more aggressive species dominating. 
    more » « less
  5. Abstract Background

    Environmental conditions can influence animal movements, determining when and how much animals move. Yet few studies have quantified how abiotic environmental factors (e.g., ambient temperature, snow depth, precipitation) may affect the activity patterns and metabolic demands of wide-ranging large predators. We demonstrate the utility of accelerometers in combination with more traditional GPS telemetry to measure energy expenditure, ranging patterns, and movement ecology of 5 gray wolves (Canis lupus), a wide-ranging social carnivore, from spring through autumn 2015 in interior Alaska, USA.

    Results

    Wolves exhibited substantial variability in home range size (range 500–8300 km2) that was not correlated with daily energy expenditure. Mean daily energy expenditure and travel distance were 22 MJ and 18 km day−1, respectively. Wolves spent 20% and 17% more energy during the summer pup rearing and autumn recruitment seasons than the spring breeding season, respectively, regardless of pack reproductive status. Wolves were predominantly crepuscular but during the night spent 2.4 × more time engaged in high energy activities (such as running) during the pup rearing season than the breeding season.

    Conclusion

    Integrating accelerometry with GPS telemetry can reveal detailed insights into the activity and energetics of wide-ranging predators. Heavy precipitation, deep snow, and high ambient temperatures each reduced wolf mobility, suggesting that abiotic conditions can impact wolf movement decisions. Identifying such patterns is an important step toward evaluating the influence of environmental factors on the space use and energy allocation in carnivores with ecosystem-wide cascading effects, particularly under changing climatic conditions.

     
    more » « less